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3D Documents

To successfully present world-registered
information displays, mobile augmented

reality (AR) applications require a detailed model of
the user’s real environment composed of both visual
and nonvisual information. Therefore, models for AR
are more difficult to produce and maintain than mod-
els typically used for VR, which concentrates solely on
the visual fidelity of a purely virtual model. Both AR
and VR models are frequently based on measurements
taken from real environments, such as architectural
models. But unlike many VR models, AR models require

semantic interpretation of the envi-
ronment. For example, AR uses
geometry not only for visualization
purposes, but also for handling
occlusions, rendering of artificial
shadows, interaction, and vision-
based tracking of real objects.
Therefore, the structure of AR mod-
els is more complex than that of VR
models.

Besides structural complexity, the
model scale is also significant. The
long-term goal of mobile AR is to let
users move unconstrained through-
out a wide area, and to continuous-
ly provide assistance for a wide
variety of tasks. This requires cover-
age of the whole area and all the

possible contained tasks in the underlying AR model.
Scaling AR models to such wide area-modeling cover-
age is only practical by leveraging legacy databases, such
as existing digital maps.

In this article, we summarize our work over the last
five years to build a tool chain based on the Studierstube
framework.1 We address many of the issues in the man-
agement of large-scale, general-purpose AR models.
Throughout our work we have been inspired by recent
trends in online information systems, in particular Web-
based applications. Similar to the Web, open standards
can enable the delivery of complex data sets from a wide
variety of sources to a large number of AR clients. The

clients execute interactive AR applications, and these
systems interpret the data and transform it when nec-
essary. We are leveraging architectural patterns and
existing tools where possible—specifically, we have
based our modeling efforts on the lingua franca of the
Web, XML.

An AR modeling pipeline
We organize the management of AR models along the

lines of a conventional information-processing pipeline,
which has as its main stages acquisition, storage, deliv-
ery, and use of the data. This organization separates cre-
ation and use of AR data into distinct phases. We
imagine that in the near future, mobile AR users will
participate in the AR database creation, either actively
or passively, by providing updates online. However, such
user participation requires a critical mass of users, so
initially we have concentrated on high-quality tools for
noninteractive content management.

Data acquisition
The first problem to address when building an AR

database is how to get data into the database. We
describe three principal methods of data acquisition:
conversion of data from legacy databases; surveying of
a physical area2 and its contained artifacts; and comput-
er-assisted authoring of location-based, interactive con-
tent using a designated authoring tool.3

Data storage
The main challenge of the data repository is not so

much the actual storage technology, but to find out how
AR models must be structured so that they are sufficient-
ly flexible to address a wide range of AR applications and
lend themselves to real-time use in location-based appli-
cations. We designed the data model and query mecha-
nism around XML formats, which have proved more
flexible than conventional relational databases and lend
themselves to incremental prototype design. The hierar-
chical nature of XML documents conveniently fits estab-
lished hierarchical modeling techniques for geometric
models. The associative addressing used in XML is suit-
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able for attaching semantic information to the model
without restricting the scope of possible applications.

Data delivery
This stage is concerned with making the data acces-

sible to clients. Speaking in database jargon, we require
a query language to describe the required piece of infor-
mation, and custom database views, which present the
data in a way that a given client can directly use. This
view generation must happen at runtime based on client
queries and represents an important and potentially
complex part of the application logic. The principal
advantages of on-the-fly transformation of data are that
complex data replication is avoided, and network band-
width use can be optimized. We use Extensible
Stylesheet Language Transformation (XSLT) stylesheets
and a powerful, context-sensitive scene graph extension
for the view generation.4

Data use
Mobile AR clients are responsible for presenting the

data to the user and enabling interaction. A data-driven
approach ensures that a single application for viewing the
3D model (an AR browser) is sufficient for a wide range
of applications. Model data helps configure all relevant
subsystems of the client application, including 3D visual-
ization, tracking, and the user interface. We use an
enhanced scene graph for visualization. The scene graph
is based on Coin3D (see http://www.coin3d.org), a free
implementation of the Open Inventor API. Custom scene
graph extensions embed visualization techniques and user
interface methods directly in the scene graph.5 Conse-
quently, the scene graph is self-contained and a generic
AR scene graph browser can execute arbitrarily complex
AR applications. The scene graph embeds all the applica-
tion logic, and is produced on the fly through view gener-
ation, so applications are effectively delivered on demand
to the client. Besides the scene graph, other subsystems
of the AR client also rely on dynamic model delivery from
the database. For example, the tracking subsystem
requires device configuration data5 and georeferenced
features for optical tracking, while the navigation subsys-
tem relies on a topological model of the surroundings.

We organized the database, as described previously,
as a classic 3-tier model involving a database server as
tier 1, an application server creating the views as tier 2,
and the client as tier 3. The offline acquisition can be
seen as tier 0 (see Figure 1). Each tier involves tools and
techniques specific to AR models. While storage of the
generic model in tier 1 is independent of individual
applications, the remaining tiers 0, 2, and 3 are not.
Therefore, the general techniques for modeling and stor-
age are explained in the next section without reference
to an application. Our description later of two major case
studies involves an outdoor4 and an indoor6 AR naviga-
tion system we have built, demonstrating implementa-
tions of tier 0, 2, and 3 components.

Data model and storage
When developing an appropriate data model several

important design issues need to be considered, which
are pointed out in the subsequent section.

Model language
The core data model employed in our work consists

of a structured collection of objects in the physical envi-
ronment with associated information—taking place at
the tier 1 (storage) stage. We designed an XML dialect
called Building Augmentation Markup Language
(BAUML) to cover both indoor and outdoor 3D environ-
ments, including topological information to derive nav-
igation hints and georeferenced semantic information.4

See the “Built on XML” sidebar on the next page for fur-
ther details on XML use.

We based the model on an object-oriented approach.
The base classes are generic object, spatial object (adding
pose information and geometrical representation), and
spatial container (adding a child subelement to aggre-
gate other objects for hierarchical composition). We can
easily extend the schema to special applications since
legacy applications can provide reasonable fallback
behavior for unknown object types by considering their
base class. Alternatively, we can attach to every object
annotations containing free-form XML subscene graphs. 

The system interprets the XML tree comprising the
model in the standard geometrical way, by defining a
child’s pose relative to its parent. However, the XML for-
mat affords the definition of other than spatial relations
by using relational techniques such as referring to object
IDs and annotations.

For outdoor use, the model introduces buildings and
waypoints as distinct features. We can attach waypoints
to either a specific building location (usually the main
entrance) or locate them along a footpath. The approach
associates buildings with address codes, and a network
of pedestrian routes connects the waypoints.

We structured the indoor model into rooms and por-
tals (that is, doorways), implying building topology to
support indoor navigation. The model explicitly sup-

IEEE Computer Graphics and Applications 33

Acquisition
(Tier 0)

Storage
(Tier 1)

Delivery
(Tier 2)

Use
(Tier 3)

XML
database

AuthoringSurveying

TrackingNavigation Visualization

View generation/
context-sensitive

scene graph

Legacy
database

conversion

1 The management of augmented reality models is organized as a pipeline
consisting of acquisition, storage, delivery, and use stages. Each stage
requires specific technologies, presented in the separate sections of the
article.
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ports fiducial markers—from ARToolKitPlus (see http://
www.studierstube.org/handheld_ar/artoolkitplus.php)
—as special spatial objects to support an indoor track-
ing system.

We can annotate points or regions of interest with
free-form text or by specifying external multimedia files
through MIME types. These annotations can display
landmarks or tourist information. The model makes use
of keywords for all objects as a simple extensible means
for filtering the annotations.

We can view an AR model as a special case of a geo-
graphic information system. However, when we start-
ed our work, no suitable XML standard for 3D GIS
existed. Likewise, the XML standard for 3D graphics,
X3D, is oriented toward conventional computer graph-
ics and even less suitable for our purposes. We therefore
eventually designed our own XML dialect. Recently we

have begun to design a new version of our model spec-
ification as an application profile (extension) of the new
Geographic Markup Language version 3 standard (see
http://www.opengeospatial.org/standards/gml). How-
ever, the work reported in this article builds on the orig-
inal custom XML dialect.

Database server
For the storage and delivery of the AR models—at the

tier 1 (storage) stage—we have developed an XML data-
base called Muddleware (see http://www.studierstube.
org /handheld_ar/muddleware.php). This database is
a real-time store for XML documents that provides per-
sistence and that clients can address associatively using
XPath. A large number of clients (we have successfully
simulated 200 simultaneous clients) can connect to the
server by using C��, Java, or XPath queries. Muddle-
ware stores the data as a document object model
(DOM). Muddleware supports atomic operations, a
simple scripting language, and a publish-and-subscribe
mechanism for database updates. Figure 2 gives an
overview of the Muddleware architecture.

XPath allows queries by pattern matching and allows
convenient addressing of multiple levels in the hierar-
chical DOM structure. It’s a purely functional language,
which makes it easy and fast to implement. We chose it
over XQuery because it’s sufficient for our query pur-
poses and more efficient to implement.

Persistence is obtained by continuously journaling
changes of the DOM to disk. The requirement to hold
the DOM in memory limits DOM to a few 100 Mbytes,
not counting multimedia files, which are stored as URL
references to a separate Web server. This capacity is 
sufficient for our current models of up to 1 km2 for out-
door applications, but is not a long-term solution.
Therefore, we have experimented with the commercial
XML database Tamino (see http://www.softwareag.
com/de/products/tamino/), again using XPath as the
query language. Performance was acceptable, although
database updates were not really satisfactory. Howev-
er, Tamino precludes rapid prototyping by requiring
defining a schema in advance to prepare the internal
structure. We therefore decided to continue the devel-
opment of Muddleware, which not only suits our perfor-
mance requirements but is also suitable as a real-time
blackboard for collaborative AR applications.

Outdoor tour guide
The canonical tour guide application was our first

choice as an example scenario for outdoor
AR. The rich cultural heritage of Vienna
as well as the availability of reasonably
accurate digital map material from the
city administration made this an obvious
test case. Our AR tour guide—Signpost—
should support navigation and informa-
tion browsing in 3D. 

The hardware setup for the mobile 
AR application originally consisted of 
a backpack system with a notebook
equipped with various sensors, and a 
see-through, head-mounted display. We
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2 The Muddleware real-time XML database processes XPath queries and returns XML
fragments to an arbitrary number of clients.

Built on XML
A key observation toward our current design was that the most

widely established data model for network computing is XML.
Using XML as a model core has a number of advantages for
complex information systems. XML’s features include the following:

■ self-documenting format that describes its structure as well as data
types and meanings of values;

■ simultaneously human- and machine-readable format;
■ presentation of many basic data structures such as lists, trees, and

records;
■ weak type system (when not enforcing a schema) that supports

quick changes in data structures and thereby assists rapid proto-
typing; and

■ structures that can be addressed using standardized methods, such
as XPath.

The fact that a high-quality, open source implementation for many
XML technologies exists and high-quality tools for creating,
modifying, and validating XML documents are available adds to
the benefit of using XML.

Many geodatabases and online information systems are built on
SQL databases. We chose XML over SQL for several reasons. SQL is
suited to huge amounts of data in flat structures. In the case of AR
models, data for all the heterogeneous locations, artifacts, and so
on require less space but is highly structured, which is a natural
strength of XML. With XML, we can easily extend existing
structures with new attributes and child elements without breaking
existing code.
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achieved tracking through a combination of differential
GPS and an inertial orientation tracker, while GPRS and
WiFi provided wireless network connectivity. Indoors,
the system employs ARToolKitPlus fiducial tracking
from the head-mounted camera. Since 2003, we have
replaced the backpack system with handheld Microsoft
Ultra-Mobile PC and Windows CE devices. All these
devices run the same Studierstube software framework
(see Figure 3).

Visualization and user interface
The system presents information—at the tier 3 (use)

stage—to the user on the head-mounted display. This
information either appears as graphical objects ren-
dered to fit into the natural environment or as text,
images, and 3D objects providing a heads-up display.
The system draws graphical objects to enhance and
complement the user’s perception of the natural envi-
ronment. It can represent abstract information, alter-
native representations of real objects, or highlighted real
structures. The heads-up display provides a GUI consist-
ing of typical 2D widgets such as buttons, lists, and text
fields and that provides other status information. Fig-
ure 4 shows a typical view through the user’s display.

The user can control a cursor within the 2D user inter-
face in the display’s upper right corner with a touch pad
that is either worn on the belt or handheld. She can
switch between different application modes, such as nav-
igation, information browsing, and annotation. Each
mode presents a number of individual panes to provide
control of parameters and other options related to the
current task. A general heads-up display at the bottom
of the view presents generic information, such as the cur-
rent location, selected target location, distance to the tar-
get, and an orientation widget modeled after a compass.

Interaction with the environment either occurs
implicitly using the user’s location and orientation or
explicitly using the viewing direction. Some functions
use a ray-picking interaction that the viewing direction
determines to select objects or establish object place-
ment. In this case, a crosshair displayed in the heads-up
display identifies the exact location of the intersection
in screen space.

Navigation
In the navigation mode—taking place in the tier 3

(use) stage—the user selects a specific target address or
a desired target location of a certain type, such as a
supermarket or a pharmacy. The system then computes

the shortest path in a known network of possible routes.
Moreover, it’s interactive and reacts to the user’s move-
ments by continuously recomputing the shortest path
to the target, if the user goes astray or decides to take
another route.

The system displays the information as a series of
waypoints visualized as cylinders standing in the envi-
ronment. Arrows connect these cylinders to show the
direction the user should move between the waypoints.
Together they become a visible line through the envi-
ronment that is easy to follow (see Figure 4). The user
can enable an additional arrow that points directly from
her current position to the next waypoint. Buildings can
clip the displayed geometry to enable additional depth
perception cues between the virtual information and
the real world. Finally, the system provides simple direc-
tional information if the user can’t perceive the next
waypoint because she is looking in another direction.

Information browsing
The information browsing mode—tier 3 (use) stage—

presents the user with location-based information. Loca-
tion-referenced information icons appear in her view,
and she selects them by looking at them. A pop-up pre-
sents associated information. The application conveys
historical and cultural information about sights in Vien-
na. For example, frescos on a building facade carry infor-

3 The evolution of mobile augmented reality hardware from (a) backpack systems to (b) Ultra-Mobile PCs, (c) personal digital assis-
tants, and (d) smart phones.

4 A visualization of the path to the selected target with clipping on known
objects.

(a) (b) (c) (d)
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mation on the sculptor who created them and the pic-
ture’s topic. Statues give information on the background
of the person they represent. In the current application,
we use geometric representations of building parts to
annotate these with cultural information. The annotat-
ed hotspots appear to the user as outlines of parts of the
building. A virtual ray is cast through the center of the
display and intersected with the hot spots. The first icon
hit triggers the display of information associated with
it (see Figure 5).

A user might not be interested in all types of avail-
able information or might get overwhelmed by a large
number of locations that trigger information displays.
Therefore, the system describes objects and content
with a keyword set, and the user can select interesting
information by selecting a subset of these keywords.
The user will only see information matching the select-
ed keywords.

Context-sensitive scene graph
To facilitate the development of the Signpost appli-

cation, we wanted to have a tool that allows scene graph
use not only for graphical rendering, but also as a geo-
metric database for other purposes—for example, to
determine the location of a particular historical artifact
for which cultural annotations are available. To this end
we developed a context-sensitive scene graph—related
to tier 2 (delivery).5 A set of context parameters main-
tained during scene graph traversal allows parameter-
ization and repurposing subscene graphs in various
ways. The system maintains context parameters—mod-
eled as key and value pairs—as part of the traversal
state, which makes them independent of the scene
graph structure.

By using pointers as parameters, we can insert tem-
plate subscene graphs multiple times during the traver-
sal. In contrast to a conventional graph structure, the
binding of child nodes to their parents happens late, dur-
ing the traversal itself, so the system can change nodes

for each traversal and provide a flexible way of assem-
bling complex scene graphs. 

The scene graph will adapt the visual appearance of
its contained objects to dynamically changing require-
ments, and even compose subgraphs on the fly. A par-
ticular visual representation is simply an instance of a
template subgraph combined with a specific choice of
context parameters. The system creates combinations
of content and visual interpretation during traversal
only, which is the actual moment in time the user
requires them. The context-sensitive scene graph helps
configure the scene graph of the second part of Sign-
post, the information browsing component.

Using the context-sensitive scene graph in
Signpost

The information browsing component requires three
different representations of all information items: 

■ a highlighting geometry registered in 3D to the infor-
mation location (here, a building part outline), 

■ a picking geometry to intersect the user’s viewing ray,
and

■ the information overlay presented to the user (here,
2D billboards with text and images or 3D objects). 

The component makes extensive use of the context-sen-
sitive scene graph concept to organize these different
presentations per object. 

To allow selection of items based on keywords or
other means, the scene graph contains a flat structure
of subgraphs, each representing a single object. By tra-
versing subsets of the flat hierarchy, the system only ren-
ders selected objects. Each subgraph contains three
branches that contain the rendering and geometric
information for each of the three modes (see Figure 6).
A context-sensitive switch selects which of the branch-
es is traversed.

During highlighting rendering, a context parameter
(vis_type) selects the first branch that produces the out-
lines to represent locations with information. The pick-
ing traverses the same scene graph but sets vis_type to
select the picking geometry to intersect with. If the sys-
tem finds an intersection, it selects the corresponding
item and traverses its subgraph again with vis_type con-
figured to render the overlay.

View generation
The overall application’s implementation is solely

based on an intricately choreographed and intercon-
nected node set in the scene graph—these include user
interface widgets, navigation, artifact visualization, and
annotation overlay. The scene graph stores not only visu-
al information, but also more general information such
as waypoints, route edges, or geometrical objects rep-
resenting the waypoints and edges. The system main-
tains correspondence between these data items by using
shared indices and context-sensitive scene graphs.

As the complexity of creating these descriptions for
larger data sets increases dramatically, manual author-
ing becomes error prone and consequently, the system
needs automated methods to create the lists. The auto-

5 The user selects the column by looking at it, triggering display of the
content.
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matic view generation—in tier 2 (delivery)
of the pipeline—bridges the gap between the
XML database model and the complex scene
graphs. It uses a dedicated XSLT processor to
generate the more verbose and redundant
representation as a scene graph from the
concise and compact BAUML model. For
example, the stylesheet not only generates
geometric descriptions for buildings and
waypoints but the route information for 
the navigation node. The system converts
annotation elements for buildings to the con-
text-sensitive highlighting/picking/overlay
subscene graphs. It then generates the user
interface panel and all connections to and
from the 3D scene along with the geometric
content of the scene.

The presentation can be customized dur-
ing translation by specifying alternative tem-
plate geometries. The user can then directly
download the resulting scene graph and use
it in the general-purpose AR scene graph
viewer, which is essentially an interpreter
for a complex semantic model.

Legacy database conversion
One of the objectives of our modeling

efforts was to provide a single consistent
source of data for all AR applications—
occurring at the tier 0 (acquisition) stage.
This step requires converting and integrat-
ing information coming from external
sources into the database without introduc-
ing undesirable artifacts during the conver-
sion. For our outdoor model, Vienna city
administration donated 2D GIS data in a VRML format
containing footprints of several dozen buildings.

Colleagues at Vienna University of Technology sup-
plied us with a network of accessible routes for pedestri-
ans in GML2 format. They derived this model from the
general map of Vienna and represented it as an undirect-
ed graph. We georeferenced each node in this graph and
used the nodes as waypoints in the navigation model.
For each building, we defined an address point and
included it into the path network to construct a path to
each address. As this route network was available in an
XML-based format, a simple XSLT transformation script
was sufficient to incorporate this data into the model.
Furthermore, we derived annotation information, such
as businesses located at certain addresses, from the gen-
eral map of Vienna. This information is connected to
address points in the spatial database. We manually
added information concerning historic sites in the envi-
ronment including multimedia annotations (text and
images) because no comprehensive digital source was
available. Recent trends such as Semapedia and Google
Earth promise to make significant amounts of georefer-
enced data available through community efforts.

We found it necessary to compute the intersection of
the 3D model data and the navigation graph, as we had
derived the relevant input data from two nonidentical
sections of the city map. We achieved this by comput-

ing a subset of the model within a given bounding box
and then repairing the internal structures of the navi-
gation graph to make sure the data was still coherent
after trimming. The maintenance tool directly reads
from and writes to the common data model.

Indoor tour guide
Indoor Signpost is the indoor counterpart to the pre-

viously described outdoor navigation application. It pro-
vides augmentation of the room geometry for
navigation using superimposed wireframe models and
transparent highlighting of relevant objects such as the
suggested exit.6

This system provides a world-in-miniature approach,
giving a zoomable bird’s-eye view of the immediate sur-
roundings. The normal mode of operation is again to
choose a destination, then follow directional arrows,
now using doorways and portals as waypoints. In addi-
tion, indoor Signpost displays annotations attached to
individual rooms or building sections on the basis of user
demand (see Figure 7 on the next page).

Visualization
The different visualization methods—occurring at

the tier 3 (use) stage—for the wireframe augmentation,
world in miniature, and navigation portal highlighting
all reuse a single scene graph. A dedicated model com-
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6 Information items traverse different subgraphs for rendering, picking, and content
display. A context parameter set before traversal selects the right branches through
the whole graph.



ponent provides a template scene graph for rendering
to client components. These adapt the model rendering
using a set of context parameters that the model compo-
nent defines. The template scene graph evaluates the

parameters to set rendering styles for individual parts
such as walls, floor, ceiling, or doorways.

The template scene graph contains a flat node struc-
ture corresponding to individual rooms grouped under
a single building node, similar to the structure used in
the Signpost information browsing application. Each
room node contains different parts for wall, ceiling,
floor, and portal geometry. These parts insert individ-
ual subgraphs from the context into their structure to
set rendering parameters such as color, render style,
transparency, and z-buffer testing.

A model component client obtains a reference to the
top-level building node. It sets up context nodes to pro-
vide rendering styles for walls, floor, ceiling, and por-
tal geometries. The client then traverses the scene
graph, which results in different visual output depend-
ing on the style context setting. For example, the nav-
igation component achieves a two-pass, color-coded,
hidden line style by rendering the building node twice:
once for rendering phantom geometry to the z-buffer
only, and a second time for wireframe rendering (see
Figure 8).

Authoring
We embedded interactive storytelling—at tier 0

(acquisition)—into indoor Signpost using the Augment-
ed Reality Presentation and Interaction Language

(April). April is an XML scripting language
that supports convenient authoring of a wide
range of AR applications and physical sce-
narios.3 It provides elements to describe
hardware (displays and tracking), content,
temporal organization, and interaction. 

April organizes content in relation to the
visibility, location, and behavior of the objects
over time. The system describes the dynam-
ic flow of events using Unified Modeling Lan-
guage (UML) state charts represented as XML
Metadata Interchange (see http://www.
omg.org/technology/documents/formal/
xmi.htm). Driven by user input or the time, 
a runtime state machine transitions from 
one state to another one, triggered by 
object behaviors as described in the state
chart.

We can compose applications in April
using graphical tools for producing UML
state charts, geometry, animations, and
other multimedia files. We can encapsulate
existing Studierstube (see http://www.
studierstube.org/) applications as April
components and use them as objects in
April along with the built-in basic objects.
April is therefore useful as a metatool that
adds interactive content exploration to
existing AR tools.

Animated guide
We used April to add an animated tour

guide (see Figure 9) to indoor Signpost for
storytelling and an AR puppet framework7

for animation. The animated character pro-
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8 The scene graph contained in a room node uses context-sensitive traversal to select
between different rendering styles. Clients of the room node set specify context para-
meters to their own rendering style and traverse the common scene graph.

7 Indoor Signpost: the overlay shows a world in miniature and an arrow
points to the suggested exit highlighted in yellow. 



vides assistance to find selected destinations and pro-
vides location-specific explanations of various rooms’
contents using body gestures—for example, looking
toward, pointing at, asking the user to follow, and so
on—as well as 2D and 3D visual elements and sound. It
appears to walk up real stairs and go through real doors
and walkways, thus further enhancing integrity with
the user’s physical environment.

View generation
Like the outdoor application, indoor Signpost relies

on view generation—taking place at tier 2 (delivery)—
to translate the compact BAUML model into the neces-
sary input files for the application subsystems. In the case
of the animated tour guide, this comprises a context-sen-
sitive scene graph including the guide animations, the
storyboard control logic, and the tracking subsystem con-
figuration. The system generates all necessary data sets
using April’s XSLT scripts. The animated tour guide is
actually the first case requiring translation of relevant
information using two XSLT stages, first translating
BAUML to the indoor Signpost data, then translating this
intermediate result into an April application that the AR
scene graph browser can load and execute.

We based the tracking subsystem on OpenTracker, a
tool for managing multiple trackers and processing their
data.5 OpenTracker’s data flow is based on a graph con-
figuration specified in XML. Indoor Signpost uses Open-
Tracker to compute a global position from the fiducial
marker tracking, which reports only local coordinates.
Indoor Signpost derives this data from the BAUML
model so the subsystem’s frames of reference can never
accidentally diverge.

Surveying
Our original intention for creating an indoor model

for AR—for the tier 0 (acquisition) stage—was to work
from architectural blueprints and extrude the data to
obtain 3D. Unfortunately, the qualitative and quantita-
tive inaccuracy of the blueprints proved significant
enough to render the plans completely useless for our
purposes, except that it taught us the difference between
as-planned and as-built documentation.

Because no accurate architectural plans were avail-
able, we used a Leica Total Station TPS700 theodolite to
survey 3D building geometry (walls, floor, and fiducials).
We repeatedly set up the theodolite at a salient position
in the middle of a building segment and measured rela-
tive angles and distances of feature points (room corners
and fiducial markers). Visibility constraints limited the
surveying to one room at a time. To obtain a uniform
global model, we chained surveying information togeth-
er by incorporating a sufficient number of overlapping
points when surveying adjacent rooms.

The theodolite transmitted batches of measurements
to a computer via a serial interface. A Matlab script con-
verted the measurements into BAUML format, which
we then loaded into a custom BAUML editor for imme-
diate quality inspection. After we completed the survey-
ing, we transformed the data into a common global
reference frame. We manually classified which points
constituted a floor, wall polygon, or fiducial marker.

The overall procedure for obtaining a high-quality,
indoor model turned out to be quite labor intensive. The
model in Figure 10—which covers long hallways, approx-
imately 20 rooms, and several hundred fiducial mark-
ers—consumed several hundred working hours. For
surveying larger models, we have therefore worked on
automated surveying using an ActiveMedia PeopleBot
mobile robot equipped with a Sick LMS 200 laser range
sensor and a 2-megapixel camera with a wide-angle lens.

The robot surveys fiducial markers using a shape-
from-motion approach. It selects two nearby frames
from the image sequence and calculates the essential
matrix for each image pair. For every landmark, we cre-
ate a 3D reconstruction using the appropriate point
matches. We assume that the landmarks are planar and
compute a robust plane fitting in 3D. The method’s
details are available elsewhere.2
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9 The indoor tour guide helps the user navigate the building.

10 Surveying a large indoor model such as the one shown is tedious; we
later used a mobile robot to perform semiautomatic surveying.
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While the pose of fiducial makers can be reliably recon-
structed using automated methods, this surveying
approach currently does not produce room geometry.
Moreover, in this initial experiment, we manually con-
trolled the robot using a joystick. However, we did achieve
a significant speedup over the fully manual methods. We
are currently working on a method for fully autonomous
robot-based surveying including room geometry, and on
improving accuracy by global bundle adjustment.

Future work
Work in progress addresses the migration to a novel

database format firmly based on recent standards such
as Geographic Markup Language version 3. This will
allow us to better incorporate assets from legacy data-
bases such as GIS systems. A particular application area
that we are currently addressing is in a new project called
Vidente (see http://www.vidente.at/) together with GIS
solution provider Grintec to visualize artifacts that are

not directly visible, such as building or subsurface infra-
structure.8 Part of this application will also perform data-
base corrections and editions while using the mobile AR
client outdoors. This poses new challenges as the inverse
mapping of converting 3D user input (for example, 3D
picking) back to the original GIS database must be sup-
ported. Finally, we want to extend our database to han-
dle models of larger physical size. ■
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