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Figure 1: Going through a technician’s to-do list with the Ubiquitous Technician application. This application seamlessly combines 
an indoor AR navigation system (a,c), an ultra-wideband calibration aid (b), and a machine maintenance application (d).

ABSTRACT 
Most of today’s Augmented Reality (AR) systems operate as 
passive information browsers relying on a finite and deterministic 
world model and a predefined hardware and software 
infrastructure. We propose an AR framework that dynamically 
and proactively exploits hitherto unknown applications and 
hardware devices, and adapts the appearance of the user interface 
to persistently stored and accumulated user preferences. Our 
framework explores proactive computing, multi-user interface 
adaptation, and user interface migration. We employ mobile and 
autonomous agents embodied by real and virtual objects as an 
interface and interaction metaphor, where agent bodies are able to 
opportunistically migrate between multiple AR applications and 
computing platforms to best match the needs of the current 
application context. We present two pilot applications to illustrate 
design concepts. 
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1 INTRODUCTION 
Most of today’s Augmented Reality (AR) systems operate as 
passive information browsers relying on a predefined, static set of 
hardware and software components. The only dynamic element of 
such systems is usually the world model, updated manually to 
store information about the physical environment and thus offer 
an interface between the real and virtual world. These world 
models are finite and deterministic, requiring application 
developers to exhaustively enumerate all possibilities. 

In contrast, research on Ubiquitous Computing (Ubicomp) 
revolves around building frameworks for the seamless and 
automatic integration of diverse hardware and software 
components, making these disparate resources easily accessible as 
standard services. One research agenda is therefore that AR 
systems need to be complemented with Ubicomp techniques to 
effectively exploit distributed resources such as software services, 
sensors, and output devices. 

Somewhat related to Ubicomp, Autonomous Agent research is 
concerned with delivering “smart” distributed software 
components and services for end users, particularly in the domain 
of interface agents. Autonomous agents are proactive software 
entities facilitating informed decision-making. These decision-
making capabilities are not necessarily based on a deep 
understanding of the problem semantics, yet allow the agent to 
deliver a useful function in a complex, heterogeneous 
environment. Animated agents are a specialization of autonomous 
agents possessing visual, often anthropomorphic representations 
in a simulated virtual world. 

In previous work [1], we have shown how to construct 
animated agents in AR (AR agents), which have a physical as 
well as a virtual part in their input and output modalities. AR 
agents can thus autonomously bridge the gap between the real and 
virtual part of mixed reality. However, the AR agent design 
presented in our earlier work suffered from some limitations: 

(1) The agent’s brain was hard-coded and not programmable on 
the fly. As a consequence, the agent operated with a static world 
model. While sensor information and user input provided live 
updates to the attributes of the world model, the structure of the 
world was defined in advance. The agent was thus programmed to 
work with a specific application and setting, and unable to adapt 
to new scenarios or react to unforeseen situations. In other words, 
the AR agent lacked typical capabilities of Ubicomp. 

(2) The agent’s behavior was mostly driven by the runtime 
system’s flow of events and had only limited autonomy. The 
agents could respond to user input and other activities observed in 
the system but could not derive any higher-order strategies that 
truly qualify as autonomous behavior. In combination with the 
static world model mentioned above, the set of different behaviors 
that the agent could exhibit was limited and deterministic. 

In this paper we present an improved design for a ubiquitous 
AR agent (or UbiAgent for short), which overcomes most of these 
limitations. The UbiAgent works similarly to the AR agent, 
however, its behavior is not only event-driven but also proactive. 
Its decisions are based on a self-contained reasoning engine 
relying on a knowledge base that is externalized in a persistent 
XML database. Thus it becomes easy to influence the agent at 
runtime by updating its knowledge base. 

The knowledge base is designed as a shared memory area, so 
that multiple UbiAgents and other distributed software 



components representing applications and real world objects can 
exchange messages. New software components can be 
dynamically added to this knowledge base, and the UbiAgent can 
learn to communicate with them through a standardized interface. 

The persistency of the knowledge base allows the UbiAgent to 
preserve its state and preferences over time, so that it can 
opportunistically migrate from one networked AR environment to 
another, following a user around. Since the UbiAgent can also 
change its appearance in response to the current environmental 
conditions and these changes can be stored and retrieved on a per-
user basis, it is capable of a behavior that we call multi-user 
interface adaptation. 

It is important to note that we do not claim that the UbiAgent is 
intelligent in the classic artificial intelligence (AI) sense; our work 
is more influenced by what is generally described as ambient 
intelligence [2]. The main contribution of our work is a set of new 
techniques to create adaptive user interfaces for AR applications. 

Our paper first discusses related work on adaptive AR. Then 
principles of our framework design are introduced including 
implementation details. Finally two applications are presented to 
illustrate design concepts (see Figure 1 for images illustrating the 
application described in Section 5.2) and serve as pilot studies. 

2 RELATED WORK 
In this section we provide an overview of techniques how 
augmented reality systems in related research projects facilitate 
adaptive behavior by tailoring their user interface to dynamically 
changing context information. 

2.1. Information Filtering 
The simplest form of automatic adaptation of AR content to 
current application context is information filtering based on a 
spatial or semantic world model. The primary objective of 
information filtering is to avoid cluttering displays by an 
unnecessarily large number of visual elements, and thus 
overwhelming and confusing users with unimportant information. 

Classic computer graphics applications [3] apply spatial 
filtering based on simple context elements such as distance and 
visibility. These filters reduce computational and cognitive 
workload by culling away irrelevant visual objects or reducing 
their level of detail. A typical AR example based on the latter 
approaches is the work of Bane and Höllerer [4], who developed 
interactive tools to enhance building visualization in a mobile AR 
setup. 

While spatial filters are efficient tools for enhancing spatial 
tasks such as indoor/outdoor navigation, AR applications need to 
frequently consider a larger and more diverse set of context 
elements. The KARMA system [5] employs a rule-based 
illustration generation system to exploit user viewpoint, object 
pose and communicative goals for efficient information 
visualization in an AR-based machine maintenance scenario. 
Although KARMA proved to be suitable for replacing manuals 
for a small-scale repair task, rule-based generation of visual 
augmentations for larger and more complex systems suffers from 
scalability problems. Julier et al. developed a hybrid approach [6] 
for their mobile AR system: a spatial model is used to prefilter 
visual elements to reduce input information for a rule-based filter 
component. 

2.2. Adaptive User Interface Components 
Besides the rendering engine filtering out data, other system 
components may also actively adapt their behavior to dynamically 
changing context information. A typical example is the UbiTrack 

project [7], which eliminates dependencies on specific sensors by 
dynamically incorporating data arriving from a heterogeneous 
network of distributed sensors. Kaiser et al. [8] developed an 
immersive AR environment that retrieves context information on 
demand to disambiguate multimodal interaction by estimating 
user intention from deictic speech utterances and 3D gestures.  

The hybrid user interface developed by Benko et al. [9] uses 2D 
and 3D gestures to switch between interaction contexts to 
determine the target display and privacy factors in a multi-display 
environment. The properties of the current target display impose 
dimensional constraints onto the available interaction methods in 
the user interface; for instance, a touchscreen panel permits only 
2D gestures, while the immersive work environment of a head-
mounted display demands 3D gestures. 

2.3. User Interface Migration 
A cross-dimensional interface is a notable example for a special 
type of adaptive component: the user interface migration 
controller. This component is responsible for interface migration 
between computing platforms with different characteristics. Full 
or partial migration of user interface elements between devices 
and displays allows the selection of the most suitable environment 
for presenting application information [10]. For instance, a PDA 
or mobile phone offers only limited rendering and interaction 
capabilities but enables users to roam a large area without 
interruptions in their work flow. On the other hand, monitors and 
projection screens are stationary but support a shared view and 
richer presentation tools. Smooth transitions across multiple 
devices running the same distributed application mitigate the 
seam between platform boundaries and thus increase productivity. 

Further migration examples in AR include the playful SHEEP 
application scenario [11] that employs 3D gestures and tangible 
interaction to initiate the transfer of a virtual sheep model between 
multiple stationary and mobile displays. Schmalstieg et al. [12] 
created a shared collaborative workspace based on a distributed 
shared scene graph that enables the migration of applications 
between hosts. Their work addresses ad-hoc collaboration and 
load balancing for AR environments. 

The Augmented Surfaces project [13] applies user interface 
migration techniques in a spatially continuous augmented physical 
workspace spanning multiple portable computers and fixed 
displays. Devices are identified by 2D fiducial markers, the 
relative pose of which triggers the migration of application 
objects. A new device can be added to the workspace if it 
implements an object serialization interface and is tagged by a 
unique marker. 

The EMMIE framework [14] introduces a hybrid user interface 
for AR systems enabling information management using a wide 
range of hardware devices. EMMIE’s environment manager 
component addresses the needs of Ubicomp by providing 
techniques such as mixed reality interaction and privacy 
management to organize virtual information on several displays 
shared by multiple users. 

Augmented Surfaces and EMMIE implement ideas in a way 
that is conceptually closest to our work, however, neither EMMIE 
nor the Augmented Surfaces framework includes concepts such as 
proactive interface adaptation, persistent preference storage, and 
resource discovery. 

2.4. Software Agents in AR 
All information filtering and adaptive component approaches 
share a significant shortcoming: the set of context and world 
model elements must be finite and deterministic to trigger 



appropriate system reaction at any time. If a novel system 
component or unknown external application appears and produces 
an unsupported type of information, then new filters and 
components must be created to take advantage of the hitherto 
unknown data types. For instance, an interface knowing only 
about spatial relationships of application objects has to be taught 
how to handle information such as user profile, application history 
or hardware capabilities. 

Although interface agents and autonomous software 
components generate much controversy in the HCI community 
[15], we argue that AR systems can benefit from software agent 
technology. Agents are designed to be independent from 
applications they are embedded into, enabling their employment 
in diverse application environments without reprogramming the 
applications’ core functionalities. Moreover, the incorporation of 
flexible high-level context elements such as application goal and 
user interest may more efficiently cope with the indeterministic 
nature of augmented physical environments than explicit direct 
manipulation techniques. 

Software agents have been present in AR applications so far in 
the form of animated anthropomorphic characters. The early 
ALIVE system [16] exhibits a virtual animated character 
composited into the user's real environment that responds to 
human body gestures on a large projection screen. The Welbo 
project [17] features an immersive setup, where an animated 
virtual robot assists an interior designer wearing an HMD. 
MacIntyre et al. [18] place prerecorded video-based actors into an 
AR environment to create an interactive theater experience. 
Cheok et al. [19] also experiment with mixed reality 
entertainment with live captured 3D characters, which enable 
telepresence of real people within a virtual or augmented reality 
setting. Cavazza et al. [20] place a live video avatar of a real 
person into a mixed reality setting, and interact with a digital 
storytelling system with body gestures and language commands. 
Balcisoy et al. [21] employed virtual humans in mixed reality as 
collaborative game partners, while Vacchetti et al. [22] used a 
virtual lifelike character in a training scenario for real factory 
machinery. 

Except the ALIVE system, all aforementioned research projects 
feature characters that are interface agents with little or no 
autonomous behavior, relying on explicit user input for their 
actions and thus representing only advanced forms of traditional 
command line interfaces enhanced by rich multimedia elements. 
There is a clear distinction between interface agents [23] 
operating as assistants for a direct manipulation interface and 
autonomous agents [24] acting parallel with the user to carry out 
delegated tasks being uninteresting or time consuming. We 
combine the advantages of both approaches into an autonomous 
interface agent [25] that executes tasks and provides feedback 
without constant attention and explicit commands while 
monitoring the user’s environment and actions. 

2.5. Mobile Agents 
Unlike desktop agents that are limited to operate in the 2D world 
of a computer screen, agents in AR may move in the user’s 
physical environment using all 6 degrees of freedom. With the 
simultaneous use of various stationary and mobile devices AR 
environments offer not only the freedom of a single three-
dimensional physical space mapped to a display but several 
interconnected spaces. Thus autonomous interface agents increase 
their mobility and gain another output modality, as the current 
pose and choice of display may both carry an important message 
for users. 

Kotz and Gray [26] use the term mobile agent for autonomous 
software components that have the ability to “transfer and 
reproduce” themselves on various networked computing devices. 
By equipping AR agents with mobile characteristics, they are no 
longer bound to a single, statically configured application and 
output device but may opportunistically migrate to and take 
advantage of other platforms more favorable for the agent’s 
current needs. 

Recent advances in hardware and software technology for 
portable devices such as PDAs and smartphones have eliminated 
previously serious constraints on the visual representation of 
migratable agents. While the early C-MAP system [27] visualizes 
its context-aware virtual museum guide as a sequence of static 
images, Wagner et al. [28] presents a similar scenario in AR with 
a full-fledged virtual 3D character exhibiting reactive behavior on 
a consumer PDA. The PEACH system [29] has experimented 
with visualization techniques using an animated cartoon character 
to preserve the continuity of an animated presentation spanning 
multiple displays. The embodied mobile agents of the Virtual Raft 
project [30] appear to “jump” between tablet PCs carried by 
participants of a playful museum exhibition. 

Besides our work, the Agent Chameleons framework [31] has 
been the only project to date allowing agents to seamlessly travel 
between real and virtual bodies while being controlled by a 
central control logic. Similarly to UbiAgents, Agent Chameleons 
are also based on a BDI agent architecture (see Section 3.5 for 
details), however, their system design lacks essential properties of 
ubiquitous AR systems such as application encapsulation, 
persistency, and dynamic agent platform management.  

3 DESIGN PRINCIPLES 
After the overview of related agent technologies, we can position 
our UbiAgent approach within the research domain of software 
agents. As Figure 2 illustrates, UbiAgents combine advantageous 
characteristics of three separate agent research areas to create a 
framework satisfying the needs of adaptive AR interfaces. This 
section introduces principles our framework design is based on. 
 

 

Figure 2: UbiAgents within software agent research 

3.1. Building upon AR agents 
Our previous work [1], the AR Puppet project integrated 

interface agents with autonomous agents to form AR agents, 
which are “smart” software components embodied by real and 
virtual objects operating in the user interface of AR systems. The 



capabilities of AR agents were demonstrated by a machine 
maintenance application, where a virtual animated repairman 
assisted an untrained user to assemble and maintain a real 
LEGO® Mindstorms robot. The behavior engine of AR agents 
relied on a finite state machine, where states represented sets of 
behavior elements (animations, sounds, etc.) and transitions were 
triggered by events coming from sensors deployed in the real and 
virtual world.  

The virtual repairman agent operated independently from the 
robot maintenance application. It relied only on its own 
observations of application attributes and user input to generate an 
animated presentation of robot features without explicit user 
guidance. However, the state machine and the world model could 
not be reconfigured at run-time. States and transitions were hard-
coded, and the structure of the world model was manually 
configured before application start-up. 

3.2. Increasing Mobility 
To highlight key differences between UbiAgents and AR agents, 
we revisit the LEGO maintenance example in the following 
sections. UbiAgents enhance AR agents with mobile agent 
technology and migration capabilities by extending the previous 
finite state machine approach. Each state in the UbiAgent’s state 
machine is now associated with certain requirements on the 
current software and hardware environment.  

In the LEGO maintenance scenario the current robot 
construction step may require a minimum screen size and display 
resolution if it involves subtle visualization details of a complex 
engine. Other agent state preconditions may set a minimum CPU 
speed and maximum memory load for resource hungry 
animations. Portable computing devices may frequently demand 
agents to check the battery level and the wireless network status to 
avoid abruptly losing important application data. 

If the requirements are met, the agent proceeds with the 
execution of the behavioral action sequence assigned to the 
current state in the state machine. However, if the capabilities of 
the current agent platform prove inadequate, the agent searches 
for another environment providing more favorable conditions to 
complete its job. If such an environment is found, the agent 
opportunistically migrates to it and executes actions in its new 
“home”. Returning to the LEGO example, the virtual repairman 
may move to a bigger screen located near the user and continue to 
explain the robot's internal structure there, if the agent finds the 
current display too small for the current construction step. 

Migration is signalized by a special behavioral sign such as an 
animation sequence, text warning or sound alert to make the user 
aware of the migration action or to instruct the user to prevent 
migration within a certain grace period. In case of the preventive 
scenario, the agent proactively suspends its current activities and 
advises the user to charge her PDA or set the screen resolution of 
the PC monitor to match minimum requirements. After the grace 
period expired without appropriate changes in the local 
workspace, the agent migrates to its new preferred environment 
and resumes its actions. Although migration causes an 
interruption in the application flow, this temporary break in the 
continuity of user interaction is invoked in favor of a more 
efficient work environment, shortening overall interaction times 
and increasing the quality of information visualization.  

Migratable user interfaces demand that dominant interface 
properties are preserved during and after migration to bridge the 
spatial and cognitive gap between disjoint workspaces. The user 
has to create a mental link between the old and new workspaces, 
thinking that the same virtual assistant continues to aid her work 

with the augmented LEGO robot, even if it migrated to a 
projection screen from a local display to increase its public 
exposure. 

The agent should appear to continue its task exactly at the point 
where it left off before migration. Beside temporally continuous 
agent behavior, visual agent appearance also frequently needs to 
remain unchanged across multiple agent environments by 
migrating respective 3D models, textures, color schemes, spatial 
arrangement etc. together with the mental state. Nevertheless, this 
is not a general requirement since in some cases the agent may 
deliberately choose a different visual representation. For example, 
a simple arrow may replace the pointing gesture of the full-body 
animated repairman of the robot maintenance application to avoid 
occluding subtle details of tiny mechanical robot parts. Similarly, 
the agent may choose to occupy a physical body taking advantage 
of sensors and actuators affecting the real world. For instance, the 
robot maintenance scenario can manipulate the real robot instead 
of a virtual robot model simulation, if the physical counterpart is 
available. 

Agent migration and the preservation of agent attributes and 
mental state during migration necessitate the use of a central 
control logic that supervises agent embodiments. We call this 
component the agent brain being in charge of controlling multiple 
agent representations or agent bodies. The agent brain relies on a 
persistent information storage, where agent and workspace 
attributes can be saved and recalled. 

3.3. Expect the Unexpected 
Let us imagine that we buy a new microwave oven for our kitchen 
and want to employ an AR system to explain its operation. With 
current classic AR software design we would use a standalone 
application tailored to the explanation of our specific microwave 
oven model. We cannot get the already familiar animated 
repairman to introduce us our new household item instead of a 
LEGO robot, as this AR agent has never “seen” a microwave 
oven before and thus it does not know how to present it. 

The UbiAgent framework teaches the old dog new tricks: we 
equip AR agents with capabilities to adapt to and work with 
hitherto unknown applications. Consequently, if we enhance the 
aforementioned household scenario with UbiAgent components, 
the microwave oven application becomes part of the dynamic 
world model of the new UbiAgent-based repairman character. If 
the application generates a request calling for an animated 
presentation of its typical features, the repairman agent migrates 
to the new environment and starts the explanation. 

UbiAgents encapsulate AR applications as black boxes hiding 
implementation details and communicating via relevant input and 
output attributes with the outside world. The black box interface 
maps private, internal application state to public attributes based 
on a well-defined schema. Any agent “understanding” this schema 
is able to automatically establish communication with the 
application, deduce application state information by monitoring 
these attributes, and influence application behavior by modifying 
attribute values. Figure 3 provides illustration for the concept 
about schemas and application encapsulation. 

The diversity of AR application domains demands the creation 
of multiple schemas. Systems acting in the fashion of digital 
manuals need a schema enabling the presentation of a range of 
household devices, computing equipment and furniture, while 
indoor and outdoor navigation systems necessitate a schema for 
the encapsulation of parts of the physical environment such as 
floors, offices, streets, and buildings. 

 



 
 

Figure 3: Application encapsulation with schema and   
adaptive user interface personalization 

 

 

Figure 4: UbiAgent structure based on the BDI model 

Multi-purpose agents need to understand several schemas to let 
the same agent work as a virtual tour guide or animated technician 
on demand. When a hitherto unknown application appears in the 
system and a UbiAgent wants to communicate with it, the agent 
first checks its schema. If the agent “speaks the language” of the 
schema, it includes the application in its control loop and reacts 
accordingly to attribute changes. 

3.4. Multi-user Interface Adaptation 
Users favor customizable interfaces over fixed ones. People have 
diverse preferences for the color, size, spatial arrangement, and 
numerous other style elements of user interface components, 
including accessibility features for the disabled. 

Present AR systems offer offline tweaking of variables in 
parameterized user interfaces to dynamically change interface 
appearance, however, customization information is only 
considered in the current session without being stored in a 

persistent memory, ignoring adaptive and multi-user concepts. As 
illustrated by Figure 3, the UbiAgent framework includes a 
persistent database to store user preferences observed and 
accumulated by a learning module for future application sessions. 
The learning module captures typical patterns in the way users set 
interface customization parameters and stores them in a personal 
user interface profile in the database. This personalization profile 
follows users around while they are working with multiple 
distributed applications running on various computing devices. 

A nearsighted user working with the previous section’s 
machine presentation scenario would always enlarge objects to 
notice small details in the LEGO robot’s mechanical structure. 
The learning module perceives this personal customization pattern 
and stores it in the database. The next time this particular user 
runs the LEGO maintenance application, all objects would be 
automatically enlarged based on the previously observed and 
stored preferences. When switching over to the microwave oven 
application, the user would find the virtual objects’ default size 
already scaled up, saving hitherto efforts to tailor application 
interfaces to the user’s taste and convenience. 

The UbiAgent framework is based on a fast and robust database 
that enables storing and recalling preferences on demand for a 
large number of users, thus enhancing AR systems with multi-
user interface adaptation capabilities. Identification of individual 
users relies on a unique user ID associated with personal devices 
such as PDAs or tablet PCs, or based on user accounts for shared 
public computers. 

3.5. Beliefs, Desires, Intentions 
Our framework follows the belief-desire-intention (BDI) model 
[32] for the implementation of the agent’s reasoning mechanism. 
This model is not only one of the most well-known approaches for 
practical reasoning agents with a substantial research corpus, but 
is also highly suitable for dynamic and uncertain environments 
such as AR systems. Figure 4 depicts the BDI model-based 
structure of UbiAgents. 

Beliefs represent the agent’s current knowledge of the real 
world (such as the estimated pose and internal attributes of 
application objects) mapped to an internal world model. Since the 
world model represents only a potentially imperfect local view of 
the physical and virtual world, it needs to be regularly updated by 
measurements coming from sensors in the real and virtual 
environment. The database caches the current world model state 
between measurements and stores persistent information such as 
user preferences, application attributes, and agent properties. 

Desires stand for agent goals associated with a desired end 
system state. They represent high-level concepts in the 
UbiAgent’s brain subordinating user interface components to 
adapt their behavior to achieve goals as quickly as possible. 
UbiAgents work towards their goals by carrying out tasks or 
Intentions using actuators in the real and virtual world. The 
currently executed tasks are constantly reevaluated to verify 
whether they are efficiently advancing the system towards the end 
state. The system may reconsider its decisions in case of 
inadequate progress, and kill suboptimal tasks while starting new, 
more promising ones. 

According to Georgeff et al. [33] adaptive, goal-oriented 
systems offer a superior performance compared to task-oriented 
systems in dynamic environments requiring automatic recovery 
from erroneous situations. In task-oriented systems each task 
strives to achieve a local optimum without remembering the 
purpose of its execution. In ubiquitous AR environments, where 
failures and suboptimal working conditions are inevitable due to 



the simultaneous use of multiple interconnected hardware and 
software components, a flexible and adaptive software 
architecture is needed to effectively tackle issues such as 
computer crashes, load balancing, and resource discovery. 

In UbiAgents, goals represent a combination of desired 
application and agent states, for instance “the repairman presents 
the operation of the LEGO robot’s light sensor”. This high-level 
goal is decomposed into subgoals or plans equivalent to 
application attribute changes and animated agent action sequences 
such as “proceeding the maintenance application to the step where 
the light sensor is activated on the real robot, and superimposing 
sensor measurement values over the real sensor while the agent 
explains the sensor’s operation”. 

Plans are converted into concrete agent tasks that are executed 
by actuators available in the current agent environment. In AR 
actuators can be physical as well as virtual. Typical examples for 
virtual actuators include animation engines controlling 3D models 
and virtual characters, 2D text messages, sound players, text-to-
speech engines, etc. Common physical actuators involve 
stationary and mobile computers with limited resources such as 
CPU speed and memory size, fixed and portable displays with a 
predefined size and resolution, audio speakers, and electric motors 
and control systems of mechanical engines. 

Before task execution, the UbiAgent framework checks 
whether actuators required for the next task are available at the 
current agent platform. For instance, the light sensor scenario 
requires that the agent has access to an infrared communication 
port to exchange messages with the physical LEGO robot to let 
the repairman agent turn on the real light sensor during 
explanation. This step also requires a PC with a fast CPU and a 
large display for 3D visualization purposes, and a 6DOF tracking 
system to facilitate the correct overlay of virtual information on 
top of the real world. 

If the desired sensors and actuators are missing or fail to meet 
the minimum requirements in the current agent environment, the 
UbiAgent consults its beliefs in the database storing persistent 
knowledge about all available agent platforms, and looks for a 
more suitable environment where it can migrate to and complete 
its current job. 

4 UBIAGENT COMPONENTS 
In this section we present the UbiAgent framework components 
and explain their functions with references to the design principles 
described in the previous section. Figure 5a shows a diagram with 
all UbiAgent entities and their relationships. 

Each UbiAgent consists of an agent brain and one or more 
agent bodies. The agent brain serves as a control logic and 
reasoning engine controlling global agent behavior. The agent 
body is a local representation of the agent brain and an 
embodiment of the agent. As UbiAgents operate in AR 
environments, they are allowed to possess real as well as virtual 
bodies, and thus appear to be integral parts of the user’s physical 
surroundings. The agent body contains sensors observing the 
agent’s real and virtual environment, and actuators affecting the 
physical and virtual world. 

UbiAgents do not exist on their own. Similarly to symbiotic 
life-forms, they need a host to exploit for living while offering 
services for the host’s benefit. In our framework we call this host 
environment a habitat, which is characterized by its hospitability 
attribute. The habitat’s hospitability symbolizes the amount of 
“nutrients” available for digital symbionts such as UbiAgents, and 
combines diverse hardware parameters into a single value to 
describe the computational power of potential host machines. 

 

 
 
 

Figure 5: a) Entities and their relationships in the UbiAgent 
framework, b) Shared memory between agents and 
applications, c) Structure of the UbiAgent database 



The single hospitability value hides irrelevant internal technical 
details of diverse computing platforms such as CPU load, 
available memory, or remaining battery power, yet allows agents 
to identify erroneous situations such as a crashing or overloaded 
device by their low hospitability value. Poor habitat conditions 
endangering agent operation trigger survival agent behavior that 
usually forces migration to another habitat. Graceful degradation 
of agent services is also possible as the availability of resources 
declines. 

Computing devices serving as agent habitats in AR must 
provide one or more displays and a network of tracking systems 
called a locale to support the superimposition of virtual 
information over the real world. Some parameters such as display 
size or the degrees of freedom of tracking data rarely change, 
therefore they are stored in a hardware repository. Repository 
information is manually updated by a technician when a new 
display device or tracking system is installed. 

Habitats constantly update their current attributes in a habitat 
information storage, including pointers to applications they are 
hosting, references to agents currently embedded in the 
applications, and information about currently associated locales 
and displays to provide a quick overview of the present habitats’ 
hardware and software infrastructure. Invariant display and locale 
parameters are loaded from the repository, while dynamic 
parameters such as screen resolution are updated by the respective 
embedded display or locale component. 

As occasional interruptions in network connectivity and power 
failures of computing devices are inevitable, habitats need a 
specific component that detects their temporary inability to 
communicate with UbiAgents despite their presence in the agents’ 
world model. This component is called the habitat manager, 
implementing autonomous functionalities such as low-level 
resource management of agent platforms, garbage collection, 
integrity checks in the database, and repairing broken connections 
between UbiAgent components. To prevent UbiAgents from 
attempting to communicate with a non-responsive agent platform, 
the habitat manager removes habitats from the world model 
unless they periodically send an “alive” signal. The habitats keep 
pinging the habitat manager until it replies with an “acknowledge” 
message, which reassures faultless communication with 
UbiAgents until the next periodic “alive” signal is due. 

4.1. Shared Agent and Application Memory 
The dynamic nature of AR environments makes constant and 
reliable communication between framework objects crucial. Thus 
the database component plays an eminent role for UbiAgents. 
The database not only stores the hardware repository, current 
habitat information, and persistent UbiAgent component 
attributes, but also serves as a shared memory between agents and 
applications (see Figure 5b). Components can register observers 
in the database, which are requests for notifications about changes 
in certain elements. When a particular application or agent writes 
a message into the shared memory (namely it adds or updates an 
element in the database), all applications and agents having 
registered an observer for that particular element receive a 
notification about the update. This mechanism makes the database 
an effective communication medium in our ubiquitous AR 
framework. 

Distributed AR applications consist of several application 
instances controlled by a dedicated master or application control. 
The application control maintains the global application state and 
distributes updates to all instances. Similarly, UbiAgents possess 
a single brain that controls multiple bodies embedded into 

individual application instances. Application instances offer only 
an incomplete local view of the global application state for agent 
bodies, while agent bodies serve only as limited proxies of the 
agent brain for application instances. To overcome these 
limitations, communication between agents and applications 
happens at a higher level: the application control and the agent 
brain exchange messages through the database, controlling actions 
of application instances and agent bodies. 

The application control maps internal application state to public 
database elements. The mapping function implements the schema 
concept described in Section 3.3. The application control creates a 
transparent interface between multiple agents and applications to 
hide private implementation details. This interface enables already 
existing complex AR systems to exploit agent services without 
any modifications in structure and code. By employing multiple 
application controls, different schemas can be supported, allowing 
a versatile use of the application in various agent systems. 

Our UbiAgent components and AR applications are built on the 
Studierstube AR framework [34], and implemented as scene 
graphs based on Open Inventor, a multiplatform high-level 3D 
graphics API. In Inventor all scene graph objects interact with one 
another via input and output attributes or “fields”, which also 
provide control variables for the C++-based control logic of the 
scene graph objects. The brain implementation of our UbiAgents 
in the demo applications is also currently based on C++ code, 
however, dynamic scripting approaches for scene graphs such as 
Pivy [35] enable the dynamic uploading of procedural code, 
making the use of agents more flexible. 

The application control marks fields relevant to the application 
state with a special tag, which allows constant observation of their 
values. A disadvantage of our scene graph approach is the lack of 
support for legacy applications. Interfaces to legacy applications 
must be implemented on a case-by-case basis. 

4.2. Agent Migration 
We use the Muddleware real-time XML database [36] to 
implement the UbiAgents’ knowledge base and shared application 
and agent memory. Muddleware provides fast and robust access 
to the UbiAgent database, which has a well-defined hierarchical 
structure (see Figure 5c). 

The Muddleware technology uses XPath-based database 
queries and observers. The XPath language syntax well suits the 
hierarchical structure of the UbiAgent database and enables the 
use of complex queries and observers to receive information about 
UbiAgent components. With XPath expressions agents can 
quickly identify habitats matching a set of infrastructure 
requirements such as hospitability, display parameters, tracking 
data, and application and agent attributes. 

The agent brain controls a finite state machine. Each state 
defines a set of desired actions for agent bodies. When entering an 
agent state, an observer is registered to represent minimum 
expectations about the ideal environment for the agent bodies’ 
actions. If the observer reports the appearance of a more suitable 
habitat, the agent brain instructs the currently embedded agent 
body to migrate to the new location. 

Migration can happen in two ways: either by serialization 
techniques of distributed shared scene graphs [12] to create a new 
agent body, or by activating already existing “sleeping” agent 
bodies while deactivating previous ones. We also created a GUI-
based UbiAgent browser to issue custom queries for debugging 
purposes and to trigger forced agent migrations for simulations. 



5 APPLICATIONS 
We created two pilot applications to illustrate our design 
concepts. The first application presents various migration 
scenarios to bridge the gap between disjoint workspaces. The 
second application focuses on application encapsulation and 
intercommunication aspects.  

5.1. Character Animation Studio 
Character animation projects in big studios rely on the 
collaborative work of several people: modelers design the mesh, 
animators and programmers create expressive behavior, and 
producers supervise all stages. The production pipeline typically 
requires the simultaneous use of multiple computing 
environments. Artists prefer to work on their personal computers, 
while programmers need to test characters in their target 
production environment such as a game console, and producers 
report current progress to customers in the presentation room. 
UbiAgent-enabled characters decrease the seam between 
workspaces by proactively migrating to presentation 
environments demanded by the current animation pipeline stage 
(see Figure 6). 

In the design stage, a PDA is used as a tangible transfer 
medium for characters. The PDA is pose-tracked by a fiducial 
marker based on ARToolKitPlus [37], an improved version of 
ARToolKit, and webcams mounted on the designer PCs. If the 
mesh designer wants to discuss potential modifications with the 
animator, he/she holds the PDA in front of the webcam on the PC 
monitor, which indicates an intention to “pick up” the character. 
The character senses the PDA’s spatial vicinity and “jumps over” 
to the handheld agent platform, which is then carried to the 
animator’s machine. There the character migrates again to the 
monitor if the PDA enters a predefined “hot” area around the 
webcam. Changes made to the character on the animator machine 
are persistently stored in the UbiAgent database, therefore the 
next time the character is transferred back to the modeler PC, its 
appearance is automatically updated to reflect changes. 

 
 

 
 

Figure 6: Improving the character animation pipeline.              
a) Picking up character by PDA, b) Tangible character transfer, 
c) Persistent agent parameter: wireframe mode preserved on 

PC and PDA, d) Sending character to projection screen 

 

In the presentation stage the character is taken to the 
presentation room’s projection screen, where an Ascension Flock 
of Birds magnetic tracking system is installed. By mounting a 
magnetic receiver on the back of the PDA and penetrating a 
predefined presentation area around the projection screen, the 
character moves from a small, private handheld display to a large 
public screen to show its features to a larger audience. 

The continuity of the visual interface creates a spatially 
continuous workspace for the collaborators and thus improves 
productivity. To avoid discontinuities in the interface and the 
interaction metaphor, the characters constantly check the 
availability of target environments and only attempt migration if 
the target platforms appear to be present and “hospitable”. This 
includes for instance the periodic checking of the handheld 
device’s battery level as a critical resource. If the battery level is 
too low, the character refuses to be picked up by the PDA or 
escapes to the nearest available display. 

To support the aforementioned scenario, character animation 
software packages need to be extended with UbiAgent 
components without modifying often proprietary internal software 
structure. Although our test scenario currently relies on our 
custom AR application framework, popular commercial animation 
packages can also be enhanced by special plug-ins. Firstly, each 
character animation application instance is encapsulated by a 
UbiAgent application instance object. This object runs 
independently from the application but continuously monitors its 
internal state and maps the observed state information to external 
parameters such as the character’s rendering mode, pose, scale, 
current animation sequence and level-of-detail. 

The external parameters are defined by a character animation 
attribute schema understood by a dedicated application control 
logic generating commands for UbiAgent-enabled animation 
tools. All tools using this schema (even if they internally rely on 
previously unknown, exotic software packages) can dynamically 
join the virtual UbiAgent workspace without revealing their low-
level details to the character control, and thus serve as shared 
rendering and manipulation resources animators can exploit. 

Besides the addition of the application control and instance 
objects, the characters themselves are represented by UbiAgent 
bodies controlled by the agent brain component. The agent bodies 
are rendered by the animation tools using the distributed character 
and rendering parameters retrieved from the shared database by 
the UbiAgent animation control. At the same time the brain 
component monitors the PDA’s pose, and activates or deactivates 
agent bodies if a user penetrates a display’s hotspot area and the 
“hospitability” parameter of the corresponding habitat is above a 
predefined threshold. 

The modeler and animator PC, the PDA, and the presentation 
machine are all habitats expecting UbiAgents by running a 
applications to render and tweak 3D animated characters. The 
agent brain, the XML database, and the habitat manager run on a 
dedicated control PC. All components communicate via WLAN 
using TCP/IP and UDP messages. The handheld agent platform is 
installed on a Dell Axim X51 PDA with hardware accelerated 
graphics, which runs Daniel Wagner’s Klimt and FPK libraries 
[36] to render an animated 3D character. The PC-based characters 
rely on the Cal3D character animation library [38]. 

5.2. Ubiquitous Technician 
Technicians are a scarce resource in every research lab and 
company. Their never-ending to-do list is constantly extended 
with requests to fix malfunctioning computers, calibrate tracking 
systems, and maintain copy machines, all located in different 



offices. The Ubiquitous Technician application provides 
assistance for our research lab’s technician to complete various 
maintenance tasks on his to-do list. In this scenario we 
intentionally reuse elements from previous research 
demonstrations to test the encapsulation and communication of 
complex external AR applications, and to create richer content for 
our demo application. 

The technician agent’s brain creates a control loop to 
systematically go through the technician’s to-do items (see Figure 
1). As each task is located at a different place in our building, the 
loop first activates a modified version of the Signpost AR indoor 
navigation system [39] to guide the technician to the next task’s 
location. The navigation application runs on a Sony VAIO U70 
portable computer equipped with a webcam tracking fiducial 
markers on office walls and corridors, a UbiSense ultra-wideband 
(UWB) position tracker, and an inertial sensor to calculate the 
technician’s current pose inside the building. The application 
displays a virtual compass suggesting the direction the technician 
should follow to reach the target. 

This complex AR navigation system is encapsulated by a 
UbiAgent application controller object exposing only three 
attributes: current destination, current location, and a flag 
indicating whether the current destination has been reached. 
UbiAgent bodies serve as visualization tools for meaningful 
software components in the technician support applications. 
Agent bodies are activated and deactivated by a central agent 
brain control based on the technician’s current location and the 
status and order of his to-do list. 

After the technician arrives at the target location, the agent 
migrates to the AR application associated with the current 
maintenance task. The first job is to calibrate a cell of a UWB 
tracking system. An AR application [40] visualizes angle-of-
arrival sensor measurements by virtual rays emanating from the 
physical sensors, and helps overcome problematic situations such 
as multipath signals caused by reflections from metal ceilings and 
doors. When the technician has finished the calibration procedure, 
he returns to the indoor navigation guide, which has already 
received a message with the next destination from the UbiAgent 
brain. Again, the technician is guided to the next task, which is the 
aforementioned LEGO maintenance scenario described in our 
previous work [1]. In this application an animated repairman 
assists the technician to assemble and maintain a real LEGO® 
Mindstorms robot. 

In the Ubiquitous Technician scenario three previously 
independent AR applications communicate with one another using 
the XML database as a shared agent and application memory. 
New applications can be dynamically added to the to-do list by 
encapsulating them with an appropriate application control. The 
schema of the application control must contain a Signpost-
compatible description of the application’s location in the 
building, a trigger to activate the application when the technician 
is nearby, and a flag indicating that the application task has been 
completed, which instructs the agent brain to proceed to the next 
to-do item. 

6 DISCUSSION  
Weiser [41] questions the usefulness of embodied interface 

agents by juxtaposing them with Ubicomp systems. He argues 
that assistant-like interfaces increase the seam between humans 
and computers, which conflicts with the fundamental goals of 
Ubicomp. We believe that empowering our interface agents with 
proactive behavior minimizes the required explicit user input to 
ensure correct agent operation, which makes agent presence less 

apparent in the interface. We also agree with Weiser’s argument 
that some users do want personal assistants acting at their 
command, therefore the potential use of embodied animated 
agents in Ubicomp environments is justified. 

User preference for agent representations spans a wide 
spectrum between lifelike and non-anthropomorphic 
embodiments. The robot maintenance application used a human-
like animated character, while the calibration aid employed simple 
geometrical shapes to visualize application state. While non-
verbal communication may increase the information bandwidth of 
agents, in some AR systems a simple arrow may prove more 
useful than a full-body animated character. A possible solution to 
match preferences and purposes of a wide range of users and 
applications may be the employment of multiple agent bodies 
with varying level of realism and detail. The appropriate agent 
body would either be explicitly selected by the user, or 
automatically chosen by the application matching the amount of 
information currently shown on the display to avoid clutters. 

Another important variable in agent systems is the amount of 
proactivity ranging between submission and aggression. Humans 
are normally suspicious about systems that exclude users from the 
decision making loop. On the other hand, the complexity of 
computing systems including AR systems will soon reach a level 
where direct manipulation interfaces become so saturated with 
controllable parameters that users will have no other choice than 
delegating interface manipulation tasks. We also share 
Lieberman’s point [25] that agents are rather suited for making 
uncritical decisions, therefore we should let agents make a 
suggestion instead of immediate actions. A typical UbiAgent 
example for this approach is the grace period allowing appropriate 
user response before agent migration. 

7 CONCLUSION AND FUTURE WORK 
In this paper we proposed a framework for adaptive AR 

systems and discussed techniques hitherto unexplored in AR such 
as multi-user interface adaptation, proactive interface migration 
and opportunistic exploitation of dynamic resources. We argue 
that animated interface agents equipped with typical 
characteristics of Ubicomp systems enrich interaction in AR. 

We created our own ontology for adaptive AR systems without 
the intention of completeness. However, an exhaustive ontology 
would be highly desirable, in particular if based on standards such 
as WSDL [42]. This would allow information sharing between 
UbiAgents and other AR and agent systems, supporting resource 
sharing between diverse computing systems. Another important 
issue for future work is to eliminate vulnerability caused by the 
current framework implementation based on a single central 
database, which makes our system prone to network and computer 
failures. 
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