
Ubiquitous Animated Agents for Augmented Reality

István Barakonyi Dieter Schmalstieg
Graz University of Technology, Institute of Computer Graphics and Vision

Inffeldgasse 16, Graz, A-8010 Austria
Email: { bara | dieter } @ icg.tu-graz.ac.at

Figure 1: Going through a technician’s to-do list with the Ubiquitous Technician application. This application seamlessly combines
an indoor AR navigation system (a,c), an ultra-wideband calibration aid (b), and a machine maintenance application (d).

ABSTRACT
Most of today’s Augmented Reality (AR) systems operate as
passive information browsers relying on a finite and deterministic
world model and a predefined hardware and software
infrastructure. We propose an AR framework that dynamically
and proactively exploits hitherto unknown applications and
hardware devices, and adapts the appearance of the user interface
to persistently stored and accumulated user preferences. Our
framework explores proactive computing, multi-user interface
adaptation, and user interface migration. We employ mobile and
autonomous agents embodied by real and virtual objects as an
interface and interaction metaphor, where agent bodies are able to
opportunistically migrate between multiple AR applications and
computing platforms to best match the needs of the current
application context. We present two pilot applications to illustrate
design concepts.

CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems - Artificial, Augmented, and
Virtual Realities; I.3.6 [Computer Graphics]: Methodology and
Techniques - Interaction techniques.

Keywords: augmented reality, ubiquitous computing, animated
agents, proactive computing, context adaptation

1 INTRODUCTION
Most of today’s Augmented Reality (AR) systems operate as
passive information browsers relying on a predefined, static set of
hardware and software components. The only dynamic element of
such systems is usually the world model, updated manually to
store information about the physical environment and thus offer
an interface between the real and virtual world. These world
models are finite and deterministic, requiring application
developers to exhaustively enumerate all possibilities.

In contrast, research on Ubiquitous Computing (Ubicomp)
revolves around building frameworks for the seamless and
automatic integration of diverse hardware and software
components, making these disparate resources easily accessible as
standard services. One research agenda is therefore that AR
systems need to be complemented with Ubicomp techniques to
effectively exploit distributed resources such as software services,
sensors, and output devices.

Somewhat related to Ubicomp, Autonomous Agent research is
concerned with delivering “smart” distributed software
components and services for end users, particularly in the domain
of interface agents. Autonomous agents are proactive software
entities facilitating informed decision-making. These decision-
making capabilities are not necessarily based on a deep
understanding of the problem semantics, yet allow the agent to
deliver a useful function in a complex, heterogeneous
environment. Animated agents are a specialization of autonomous
agents possessing visual, often anthropomorphic representations
in a simulated virtual world.

In previous work [1], we have shown how to construct
animated agents in AR (AR agents), which have a physical as
well as a virtual part in their input and output modalities. AR
agents can thus autonomously bridge the gap between the real and
virtual part of mixed reality. However, the AR agent design
presented in our earlier work suffered from some limitations:

(1) The agent’s brain was hard-coded and not programmable on
the fly. As a consequence, the agent operated with a static world
model. While sensor information and user input provided live
updates to the attributes of the world model, the structure of the
world was defined in advance. The agent was thus programmed to
work with a specific application and setting, and unable to adapt
to new scenarios or react to unforeseen situations. In other words,
the AR agent lacked typical capabilities of Ubicomp.

(2) The agent’s behavior was mostly driven by the runtime
system’s flow of events and had only limited autonomy. The
agents could respond to user input and other activities observed in
the system but could not derive any higher-order strategies that
truly qualify as autonomous behavior. In combination with the
static world model mentioned above, the set of different behaviors
that the agent could exhibit was limited and deterministic.

In this paper we present an improved design for a ubiquitous
AR agent (or UbiAgent for short), which overcomes most of these
limitations. The UbiAgent works similarly to the AR agent,
however, its behavior is not only event-driven but also proactive.
Its decisions are based on a self-contained reasoning engine
relying on a knowledge base that is externalized in a persistent
XML database. Thus it becomes easy to influence the agent at
runtime by updating its knowledge base.

The knowledge base is designed as a shared memory area, so
that multiple UbiAgents and other distributed software

components representing applications and real world objects can
exchange messages. New software components can be
dynamically added to this knowledge base, and the UbiAgent can
learn to communicate with them through a standardized interface.

The persistency of the knowledge base allows the UbiAgent to
preserve its state and preferences over time, so that it can
opportunistically migrate from one networked AR environment to
another, following a user around. Since the UbiAgent can also
change its appearance in response to the current environmental
conditions and these changes can be stored and retrieved on a per-
user basis, it is capable of a behavior that we call multi-user
interface adaptation.

It is important to note that we do not claim that the UbiAgent is
intelligent in the classic artificial intelligence (AI) sense; our work
is more influenced by what is generally described as ambient
intelligence [2]. The main contribution of our work is a set of new
techniques to create adaptive user interfaces for AR applications.

Our paper first discusses related work on adaptive AR. Then
principles of our framework design are introduced including
implementation details. Finally two applications are presented to
illustrate design concepts (see Figure 1 for images illustrating the
application described in Section 5.2) and serve as pilot studies.

2 RELATED WORK
In this section we provide an overview of techniques how
augmented reality systems in related research projects facilitate
adaptive behavior by tailoring their user interface to dynamically
changing context information.

2.1. Information Filtering
The simplest form of automatic adaptation of AR content to
current application context is information filtering based on a
spatial or semantic world model. The primary objective of
information filtering is to avoid cluttering displays by an
unnecessarily large number of visual elements, and thus
overwhelming and confusing users with unimportant information.

Classic computer graphics applications [3] apply spatial
filtering based on simple context elements such as distance and
visibility. These filters reduce computational and cognitive
workload by culling away irrelevant visual objects or reducing
their level of detail. A typical AR example based on the latter
approaches is the work of Bane and Höllerer [4], who developed
interactive tools to enhance building visualization in a mobile AR
setup.

While spatial filters are efficient tools for enhancing spatial
tasks such as indoor/outdoor navigation, AR applications need to
frequently consider a larger and more diverse set of context
elements. The KARMA system [5] employs a rule-based
illustration generation system to exploit user viewpoint, object
pose and communicative goals for efficient information
visualization in an AR-based machine maintenance scenario.
Although KARMA proved to be suitable for replacing manuals
for a small-scale repair task, rule-based generation of visual
augmentations for larger and more complex systems suffers from
scalability problems. Julier et al. developed a hybrid approach [6]
for their mobile AR system: a spatial model is used to prefilter
visual elements to reduce input information for a rule-based filter
component.

2.2. Adaptive User Interface Components
Besides the rendering engine filtering out data, other system
components may also actively adapt their behavior to dynamically
changing context information. A typical example is the UbiTrack

project [7], which eliminates dependencies on specific sensors by
dynamically incorporating data arriving from a heterogeneous
network of distributed sensors. Kaiser et al. [8] developed an
immersive AR environment that retrieves context information on
demand to disambiguate multimodal interaction by estimating
user intention from deictic speech utterances and 3D gestures.

The hybrid user interface developed by Benko et al. [9] uses 2D
and 3D gestures to switch between interaction contexts to
determine the target display and privacy factors in a multi-display
environment. The properties of the current target display impose
dimensional constraints onto the available interaction methods in
the user interface; for instance, a touchscreen panel permits only
2D gestures, while the immersive work environment of a head-
mounted display demands 3D gestures.

2.3. User Interface Migration
A cross-dimensional interface is a notable example for a special
type of adaptive component: the user interface migration
controller. This component is responsible for interface migration
between computing platforms with different characteristics. Full
or partial migration of user interface elements between devices
and displays allows the selection of the most suitable environment
for presenting application information [10]. For instance, a PDA
or mobile phone offers only limited rendering and interaction
capabilities but enables users to roam a large area without
interruptions in their work flow. On the other hand, monitors and
projection screens are stationary but support a shared view and
richer presentation tools. Smooth transitions across multiple
devices running the same distributed application mitigate the
seam between platform boundaries and thus increase productivity.

Further migration examples in AR include the playful SHEEP
application scenario [11] that employs 3D gestures and tangible
interaction to initiate the transfer of a virtual sheep model between
multiple stationary and mobile displays. Schmalstieg et al. [12]
created a shared collaborative workspace based on a distributed
shared scene graph that enables the migration of applications
between hosts. Their work addresses ad-hoc collaboration and
load balancing for AR environments.

The Augmented Surfaces project [13] applies user interface
migration techniques in a spatially continuous augmented physical
workspace spanning multiple portable computers and fixed
displays. Devices are identified by 2D fiducial markers, the
relative pose of which triggers the migration of application
objects. A new device can be added to the workspace if it
implements an object serialization interface and is tagged by a
unique marker.

The EMMIE framework [14] introduces a hybrid user interface
for AR systems enabling information management using a wide
range of hardware devices. EMMIE’s environment manager
component addresses the needs of Ubicomp by providing
techniques such as mixed reality interaction and privacy
management to organize virtual information on several displays
shared by multiple users.

Augmented Surfaces and EMMIE implement ideas in a way
that is conceptually closest to our work, however, neither EMMIE
nor the Augmented Surfaces framework includes concepts such as
proactive interface adaptation, persistent preference storage, and
resource discovery.

2.4. Software Agents in AR
All information filtering and adaptive component approaches
share a significant shortcoming: the set of context and world
model elements must be finite and deterministic to trigger

appropriate system reaction at any time. If a novel system
component or unknown external application appears and produces
an unsupported type of information, then new filters and
components must be created to take advantage of the hitherto
unknown data types. For instance, an interface knowing only
about spatial relationships of application objects has to be taught
how to handle information such as user profile, application history
or hardware capabilities.

Although interface agents and autonomous software
components generate much controversy in the HCI community
[15], we argue that AR systems can benefit from software agent
technology. Agents are designed to be independent from
applications they are embedded into, enabling their employment
in diverse application environments without reprogramming the
applications’ core functionalities. Moreover, the incorporation of
flexible high-level context elements such as application goal and
user interest may more efficiently cope with the indeterministic
nature of augmented physical environments than explicit direct
manipulation techniques.

Software agents have been present in AR applications so far in
the form of animated anthropomorphic characters. The early
ALIVE system [16] exhibits a virtual animated character
composited into the user's real environment that responds to
human body gestures on a large projection screen. The Welbo
project [17] features an immersive setup, where an animated
virtual robot assists an interior designer wearing an HMD.
MacIntyre et al. [18] place prerecorded video-based actors into an
AR environment to create an interactive theater experience.
Cheok et al. [19] also experiment with mixed reality
entertainment with live captured 3D characters, which enable
telepresence of real people within a virtual or augmented reality
setting. Cavazza et al. [20] place a live video avatar of a real
person into a mixed reality setting, and interact with a digital
storytelling system with body gestures and language commands.
Balcisoy et al. [21] employed virtual humans in mixed reality as
collaborative game partners, while Vacchetti et al. [22] used a
virtual lifelike character in a training scenario for real factory
machinery.

Except the ALIVE system, all aforementioned research projects
feature characters that are interface agents with little or no
autonomous behavior, relying on explicit user input for their
actions and thus representing only advanced forms of traditional
command line interfaces enhanced by rich multimedia elements.
There is a clear distinction between interface agents [23]
operating as assistants for a direct manipulation interface and
autonomous agents [24] acting parallel with the user to carry out
delegated tasks being uninteresting or time consuming. We
combine the advantages of both approaches into an autonomous
interface agent [25] that executes tasks and provides feedback
without constant attention and explicit commands while
monitoring the user’s environment and actions.

2.5. Mobile Agents
Unlike desktop agents that are limited to operate in the 2D world
of a computer screen, agents in AR may move in the user’s
physical environment using all 6 degrees of freedom. With the
simultaneous use of various stationary and mobile devices AR
environments offer not only the freedom of a single three-
dimensional physical space mapped to a display but several
interconnected spaces. Thus autonomous interface agents increase
their mobility and gain another output modality, as the current
pose and choice of display may both carry an important message
for users.

Kotz and Gray [26] use the term mobile agent for autonomous
software components that have the ability to “transfer and
reproduce” themselves on various networked computing devices.
By equipping AR agents with mobile characteristics, they are no
longer bound to a single, statically configured application and
output device but may opportunistically migrate to and take
advantage of other platforms more favorable for the agent’s
current needs.

Recent advances in hardware and software technology for
portable devices such as PDAs and smartphones have eliminated
previously serious constraints on the visual representation of
migratable agents. While the early C-MAP system [27] visualizes
its context-aware virtual museum guide as a sequence of static
images, Wagner et al. [28] presents a similar scenario in AR with
a full-fledged virtual 3D character exhibiting reactive behavior on
a consumer PDA. The PEACH system [29] has experimented
with visualization techniques using an animated cartoon character
to preserve the continuity of an animated presentation spanning
multiple displays. The embodied mobile agents of the Virtual Raft
project [30] appear to “jump” between tablet PCs carried by
participants of a playful museum exhibition.

Besides our work, the Agent Chameleons framework [31] has
been the only project to date allowing agents to seamlessly travel
between real and virtual bodies while being controlled by a
central control logic. Similarly to UbiAgents, Agent Chameleons
are also based on a BDI agent architecture (see Section 3.5 for
details), however, their system design lacks essential properties of
ubiquitous AR systems such as application encapsulation,
persistency, and dynamic agent platform management.

3 DESIGN PRINCIPLES
After the overview of related agent technologies, we can position
our UbiAgent approach within the research domain of software
agents. As Figure 2 illustrates, UbiAgents combine advantageous
characteristics of three separate agent research areas to create a
framework satisfying the needs of adaptive AR interfaces. This
section introduces principles our framework design is based on.

Figure 2: UbiAgents within software agent research

3.1. Building upon AR agents
Our previous work [1], the AR Puppet project integrated

interface agents with autonomous agents to form AR agents,
which are “smart” software components embodied by real and
virtual objects operating in the user interface of AR systems. The

capabilities of AR agents were demonstrated by a machine
maintenance application, where a virtual animated repairman
assisted an untrained user to assemble and maintain a real
LEGO® Mindstorms robot. The behavior engine of AR agents
relied on a finite state machine, where states represented sets of
behavior elements (animations, sounds, etc.) and transitions were
triggered by events coming from sensors deployed in the real and
virtual world.

The virtual repairman agent operated independently from the
robot maintenance application. It relied only on its own
observations of application attributes and user input to generate an
animated presentation of robot features without explicit user
guidance. However, the state machine and the world model could
not be reconfigured at run-time. States and transitions were hard-
coded, and the structure of the world model was manually
configured before application start-up.

3.2. Increasing Mobility
To highlight key differences between UbiAgents and AR agents,
we revisit the LEGO maintenance example in the following
sections. UbiAgents enhance AR agents with mobile agent
technology and migration capabilities by extending the previous
finite state machine approach. Each state in the UbiAgent’s state
machine is now associated with certain requirements on the
current software and hardware environment.

In the LEGO maintenance scenario the current robot
construction step may require a minimum screen size and display
resolution if it involves subtle visualization details of a complex
engine. Other agent state preconditions may set a minimum CPU
speed and maximum memory load for resource hungry
animations. Portable computing devices may frequently demand
agents to check the battery level and the wireless network status to
avoid abruptly losing important application data.

If the requirements are met, the agent proceeds with the
execution of the behavioral action sequence assigned to the
current state in the state machine. However, if the capabilities of
the current agent platform prove inadequate, the agent searches
for another environment providing more favorable conditions to
complete its job. If such an environment is found, the agent
opportunistically migrates to it and executes actions in its new
“home”. Returning to the LEGO example, the virtual repairman
may move to a bigger screen located near the user and continue to
explain the robot's internal structure there, if the agent finds the
current display too small for the current construction step.

Migration is signalized by a special behavioral sign such as an
animation sequence, text warning or sound alert to make the user
aware of the migration action or to instruct the user to prevent
migration within a certain grace period. In case of the preventive
scenario, the agent proactively suspends its current activities and
advises the user to charge her PDA or set the screen resolution of
the PC monitor to match minimum requirements. After the grace
period expired without appropriate changes in the local
workspace, the agent migrates to its new preferred environment
and resumes its actions. Although migration causes an
interruption in the application flow, this temporary break in the
continuity of user interaction is invoked in favor of a more
efficient work environment, shortening overall interaction times
and increasing the quality of information visualization.

Migratable user interfaces demand that dominant interface
properties are preserved during and after migration to bridge the
spatial and cognitive gap between disjoint workspaces. The user
has to create a mental link between the old and new workspaces,
thinking that the same virtual assistant continues to aid her work

with the augmented LEGO robot, even if it migrated to a
projection screen from a local display to increase its public
exposure.

The agent should appear to continue its task exactly at the point
where it left off before migration. Beside temporally continuous
agent behavior, visual agent appearance also frequently needs to
remain unchanged across multiple agent environments by
migrating respective 3D models, textures, color schemes, spatial
arrangement etc. together with the mental state. Nevertheless, this
is not a general requirement since in some cases the agent may
deliberately choose a different visual representation. For example,
a simple arrow may replace the pointing gesture of the full-body
animated repairman of the robot maintenance application to avoid
occluding subtle details of tiny mechanical robot parts. Similarly,
the agent may choose to occupy a physical body taking advantage
of sensors and actuators affecting the real world. For instance, the
robot maintenance scenario can manipulate the real robot instead
of a virtual robot model simulation, if the physical counterpart is
available.

Agent migration and the preservation of agent attributes and
mental state during migration necessitate the use of a central
control logic that supervises agent embodiments. We call this
component the agent brain being in charge of controlling multiple
agent representations or agent bodies. The agent brain relies on a
persistent information storage, where agent and workspace
attributes can be saved and recalled.

3.3. Expect the Unexpected
Let us imagine that we buy a new microwave oven for our kitchen
and want to employ an AR system to explain its operation. With
current classic AR software design we would use a standalone
application tailored to the explanation of our specific microwave
oven model. We cannot get the already familiar animated
repairman to introduce us our new household item instead of a
LEGO robot, as this AR agent has never “seen” a microwave
oven before and thus it does not know how to present it.

The UbiAgent framework teaches the old dog new tricks: we
equip AR agents with capabilities to adapt to and work with
hitherto unknown applications. Consequently, if we enhance the
aforementioned household scenario with UbiAgent components,
the microwave oven application becomes part of the dynamic
world model of the new UbiAgent-based repairman character. If
the application generates a request calling for an animated
presentation of its typical features, the repairman agent migrates
to the new environment and starts the explanation.

UbiAgents encapsulate AR applications as black boxes hiding
implementation details and communicating via relevant input and
output attributes with the outside world. The black box interface
maps private, internal application state to public attributes based
on a well-defined schema. Any agent “understanding” this schema
is able to automatically establish communication with the
application, deduce application state information by monitoring
these attributes, and influence application behavior by modifying
attribute values. Figure 3 provides illustration for the concept
about schemas and application encapsulation.

The diversity of AR application domains demands the creation
of multiple schemas. Systems acting in the fashion of digital
manuals need a schema enabling the presentation of a range of
household devices, computing equipment and furniture, while
indoor and outdoor navigation systems necessitate a schema for
the encapsulation of parts of the physical environment such as
floors, offices, streets, and buildings.

Figure 3: Application encapsulation with schema and
adaptive user interface personalization

Figure 4: UbiAgent structure based on the BDI model

Multi-purpose agents need to understand several schemas to let
the same agent work as a virtual tour guide or animated technician
on demand. When a hitherto unknown application appears in the
system and a UbiAgent wants to communicate with it, the agent
first checks its schema. If the agent “speaks the language” of the
schema, it includes the application in its control loop and reacts
accordingly to attribute changes.

3.4. Multi-user Interface Adaptation
Users favor customizable interfaces over fixed ones. People have
diverse preferences for the color, size, spatial arrangement, and
numerous other style elements of user interface components,
including accessibility features for the disabled.

Present AR systems offer offline tweaking of variables in
parameterized user interfaces to dynamically change interface
appearance, however, customization information is only
considered in the current session without being stored in a

persistent memory, ignoring adaptive and multi-user concepts. As
illustrated by Figure 3, the UbiAgent framework includes a
persistent database to store user preferences observed and
accumulated by a learning module for future application sessions.
The learning module captures typical patterns in the way users set
interface customization parameters and stores them in a personal
user interface profile in the database. This personalization profile
follows users around while they are working with multiple
distributed applications running on various computing devices.

A nearsighted user working with the previous section’s
machine presentation scenario would always enlarge objects to
notice small details in the LEGO robot’s mechanical structure.
The learning module perceives this personal customization pattern
and stores it in the database. The next time this particular user
runs the LEGO maintenance application, all objects would be
automatically enlarged based on the previously observed and
stored preferences. When switching over to the microwave oven
application, the user would find the virtual objects’ default size
already scaled up, saving hitherto efforts to tailor application
interfaces to the user’s taste and convenience.

The UbiAgent framework is based on a fast and robust database
that enables storing and recalling preferences on demand for a
large number of users, thus enhancing AR systems with multi-
user interface adaptation capabilities. Identification of individual
users relies on a unique user ID associated with personal devices
such as PDAs or tablet PCs, or based on user accounts for shared
public computers.

3.5. Beliefs, Desires, Intentions
Our framework follows the belief-desire-intention (BDI) model
[32] for the implementation of the agent’s reasoning mechanism.
This model is not only one of the most well-known approaches for
practical reasoning agents with a substantial research corpus, but
is also highly suitable for dynamic and uncertain environments
such as AR systems. Figure 4 depicts the BDI model-based
structure of UbiAgents.

Beliefs represent the agent’s current knowledge of the real
world (such as the estimated pose and internal attributes of
application objects) mapped to an internal world model. Since the
world model represents only a potentially imperfect local view of
the physical and virtual world, it needs to be regularly updated by
measurements coming from sensors in the real and virtual
environment. The database caches the current world model state
between measurements and stores persistent information such as
user preferences, application attributes, and agent properties.

Desires stand for agent goals associated with a desired end
system state. They represent high-level concepts in the
UbiAgent’s brain subordinating user interface components to
adapt their behavior to achieve goals as quickly as possible.
UbiAgents work towards their goals by carrying out tasks or
Intentions using actuators in the real and virtual world. The
currently executed tasks are constantly reevaluated to verify
whether they are efficiently advancing the system towards the end
state. The system may reconsider its decisions in case of
inadequate progress, and kill suboptimal tasks while starting new,
more promising ones.

According to Georgeff et al. [33] adaptive, goal-oriented
systems offer a superior performance compared to task-oriented
systems in dynamic environments requiring automatic recovery
from erroneous situations. In task-oriented systems each task
strives to achieve a local optimum without remembering the
purpose of its execution. In ubiquitous AR environments, where
failures and suboptimal working conditions are inevitable due to

the simultaneous use of multiple interconnected hardware and
software components, a flexible and adaptive software
architecture is needed to effectively tackle issues such as
computer crashes, load balancing, and resource discovery.

In UbiAgents, goals represent a combination of desired
application and agent states, for instance “the repairman presents
the operation of the LEGO robot’s light sensor”. This high-level
goal is decomposed into subgoals or plans equivalent to
application attribute changes and animated agent action sequences
such as “proceeding the maintenance application to the step where
the light sensor is activated on the real robot, and superimposing
sensor measurement values over the real sensor while the agent
explains the sensor’s operation”.

Plans are converted into concrete agent tasks that are executed
by actuators available in the current agent environment. In AR
actuators can be physical as well as virtual. Typical examples for
virtual actuators include animation engines controlling 3D models
and virtual characters, 2D text messages, sound players, text-to-
speech engines, etc. Common physical actuators involve
stationary and mobile computers with limited resources such as
CPU speed and memory size, fixed and portable displays with a
predefined size and resolution, audio speakers, and electric motors
and control systems of mechanical engines.

Before task execution, the UbiAgent framework checks
whether actuators required for the next task are available at the
current agent platform. For instance, the light sensor scenario
requires that the agent has access to an infrared communication
port to exchange messages with the physical LEGO robot to let
the repairman agent turn on the real light sensor during
explanation. This step also requires a PC with a fast CPU and a
large display for 3D visualization purposes, and a 6DOF tracking
system to facilitate the correct overlay of virtual information on
top of the real world.

If the desired sensors and actuators are missing or fail to meet
the minimum requirements in the current agent environment, the
UbiAgent consults its beliefs in the database storing persistent
knowledge about all available agent platforms, and looks for a
more suitable environment where it can migrate to and complete
its current job.

4 UBIAGENT COMPONENTS
In this section we present the UbiAgent framework components
and explain their functions with references to the design principles
described in the previous section. Figure 5a shows a diagram with
all UbiAgent entities and their relationships.

Each UbiAgent consists of an agent brain and one or more
agent bodies. The agent brain serves as a control logic and
reasoning engine controlling global agent behavior. The agent
body is a local representation of the agent brain and an
embodiment of the agent. As UbiAgents operate in AR
environments, they are allowed to possess real as well as virtual
bodies, and thus appear to be integral parts of the user’s physical
surroundings. The agent body contains sensors observing the
agent’s real and virtual environment, and actuators affecting the
physical and virtual world.

UbiAgents do not exist on their own. Similarly to symbiotic
life-forms, they need a host to exploit for living while offering
services for the host’s benefit. In our framework we call this host
environment a habitat, which is characterized by its hospitability
attribute. The habitat’s hospitability symbolizes the amount of
“nutrients” available for digital symbionts such as UbiAgents, and
combines diverse hardware parameters into a single value to
describe the computational power of potential host machines.

Figure 5: a) Entities and their relationships in the UbiAgent
framework, b) Shared memory between agents and
applications, c) Structure of the UbiAgent database

The single hospitability value hides irrelevant internal technical
details of diverse computing platforms such as CPU load,
available memory, or remaining battery power, yet allows agents
to identify erroneous situations such as a crashing or overloaded
device by their low hospitability value. Poor habitat conditions
endangering agent operation trigger survival agent behavior that
usually forces migration to another habitat. Graceful degradation
of agent services is also possible as the availability of resources
declines.

Computing devices serving as agent habitats in AR must
provide one or more displays and a network of tracking systems
called a locale to support the superimposition of virtual
information over the real world. Some parameters such as display
size or the degrees of freedom of tracking data rarely change,
therefore they are stored in a hardware repository. Repository
information is manually updated by a technician when a new
display device or tracking system is installed.

Habitats constantly update their current attributes in a habitat
information storage, including pointers to applications they are
hosting, references to agents currently embedded in the
applications, and information about currently associated locales
and displays to provide a quick overview of the present habitats’
hardware and software infrastructure. Invariant display and locale
parameters are loaded from the repository, while dynamic
parameters such as screen resolution are updated by the respective
embedded display or locale component.

As occasional interruptions in network connectivity and power
failures of computing devices are inevitable, habitats need a
specific component that detects their temporary inability to
communicate with UbiAgents despite their presence in the agents’
world model. This component is called the habitat manager,
implementing autonomous functionalities such as low-level
resource management of agent platforms, garbage collection,
integrity checks in the database, and repairing broken connections
between UbiAgent components. To prevent UbiAgents from
attempting to communicate with a non-responsive agent platform,
the habitat manager removes habitats from the world model
unless they periodically send an “alive” signal. The habitats keep
pinging the habitat manager until it replies with an “acknowledge”
message, which reassures faultless communication with
UbiAgents until the next periodic “alive” signal is due.

4.1. Shared Agent and Application Memory
The dynamic nature of AR environments makes constant and
reliable communication between framework objects crucial. Thus
the database component plays an eminent role for UbiAgents.
The database not only stores the hardware repository, current
habitat information, and persistent UbiAgent component
attributes, but also serves as a shared memory between agents and
applications (see Figure 5b). Components can register observers
in the database, which are requests for notifications about changes
in certain elements. When a particular application or agent writes
a message into the shared memory (namely it adds or updates an
element in the database), all applications and agents having
registered an observer for that particular element receive a
notification about the update. This mechanism makes the database
an effective communication medium in our ubiquitous AR
framework.

Distributed AR applications consist of several application
instances controlled by a dedicated master or application control.
The application control maintains the global application state and
distributes updates to all instances. Similarly, UbiAgents possess
a single brain that controls multiple bodies embedded into

individual application instances. Application instances offer only
an incomplete local view of the global application state for agent
bodies, while agent bodies serve only as limited proxies of the
agent brain for application instances. To overcome these
limitations, communication between agents and applications
happens at a higher level: the application control and the agent
brain exchange messages through the database, controlling actions
of application instances and agent bodies.

The application control maps internal application state to public
database elements. The mapping function implements the schema
concept described in Section 3.3. The application control creates a
transparent interface between multiple agents and applications to
hide private implementation details. This interface enables already
existing complex AR systems to exploit agent services without
any modifications in structure and code. By employing multiple
application controls, different schemas can be supported, allowing
a versatile use of the application in various agent systems.

Our UbiAgent components and AR applications are built on the
Studierstube AR framework [34], and implemented as scene
graphs based on Open Inventor, a multiplatform high-level 3D
graphics API. In Inventor all scene graph objects interact with one
another via input and output attributes or “fields”, which also
provide control variables for the C++-based control logic of the
scene graph objects. The brain implementation of our UbiAgents
in the demo applications is also currently based on C++ code,
however, dynamic scripting approaches for scene graphs such as
Pivy [35] enable the dynamic uploading of procedural code,
making the use of agents more flexible.

The application control marks fields relevant to the application
state with a special tag, which allows constant observation of their
values. A disadvantage of our scene graph approach is the lack of
support for legacy applications. Interfaces to legacy applications
must be implemented on a case-by-case basis.

4.2. Agent Migration
We use the Muddleware real-time XML database [36] to
implement the UbiAgents’ knowledge base and shared application
and agent memory. Muddleware provides fast and robust access
to the UbiAgent database, which has a well-defined hierarchical
structure (see Figure 5c).

The Muddleware technology uses XPath-based database
queries and observers. The XPath language syntax well suits the
hierarchical structure of the UbiAgent database and enables the
use of complex queries and observers to receive information about
UbiAgent components. With XPath expressions agents can
quickly identify habitats matching a set of infrastructure
requirements such as hospitability, display parameters, tracking
data, and application and agent attributes.

The agent brain controls a finite state machine. Each state
defines a set of desired actions for agent bodies. When entering an
agent state, an observer is registered to represent minimum
expectations about the ideal environment for the agent bodies’
actions. If the observer reports the appearance of a more suitable
habitat, the agent brain instructs the currently embedded agent
body to migrate to the new location.

Migration can happen in two ways: either by serialization
techniques of distributed shared scene graphs [12] to create a new
agent body, or by activating already existing “sleeping” agent
bodies while deactivating previous ones. We also created a GUI-
based UbiAgent browser to issue custom queries for debugging
purposes and to trigger forced agent migrations for simulations.

5 APPLICATIONS
We created two pilot applications to illustrate our design
concepts. The first application presents various migration
scenarios to bridge the gap between disjoint workspaces. The
second application focuses on application encapsulation and
intercommunication aspects.

5.1. Character Animation Studio
Character animation projects in big studios rely on the
collaborative work of several people: modelers design the mesh,
animators and programmers create expressive behavior, and
producers supervise all stages. The production pipeline typically
requires the simultaneous use of multiple computing
environments. Artists prefer to work on their personal computers,
while programmers need to test characters in their target
production environment such as a game console, and producers
report current progress to customers in the presentation room.
UbiAgent-enabled characters decrease the seam between
workspaces by proactively migrating to presentation
environments demanded by the current animation pipeline stage
(see Figure 6).

In the design stage, a PDA is used as a tangible transfer
medium for characters. The PDA is pose-tracked by a fiducial
marker based on ARToolKitPlus [37], an improved version of
ARToolKit, and webcams mounted on the designer PCs. If the
mesh designer wants to discuss potential modifications with the
animator, he/she holds the PDA in front of the webcam on the PC
monitor, which indicates an intention to “pick up” the character.
The character senses the PDA’s spatial vicinity and “jumps over”
to the handheld agent platform, which is then carried to the
animator’s machine. There the character migrates again to the
monitor if the PDA enters a predefined “hot” area around the
webcam. Changes made to the character on the animator machine
are persistently stored in the UbiAgent database, therefore the
next time the character is transferred back to the modeler PC, its
appearance is automatically updated to reflect changes.

Figure 6: Improving the character animation pipeline.
a) Picking up character by PDA, b) Tangible character transfer,
c) Persistent agent parameter: wireframe mode preserved on

PC and PDA, d) Sending character to projection screen

In the presentation stage the character is taken to the
presentation room’s projection screen, where an Ascension Flock
of Birds magnetic tracking system is installed. By mounting a
magnetic receiver on the back of the PDA and penetrating a
predefined presentation area around the projection screen, the
character moves from a small, private handheld display to a large
public screen to show its features to a larger audience.

The continuity of the visual interface creates a spatially
continuous workspace for the collaborators and thus improves
productivity. To avoid discontinuities in the interface and the
interaction metaphor, the characters constantly check the
availability of target environments and only attempt migration if
the target platforms appear to be present and “hospitable”. This
includes for instance the periodic checking of the handheld
device’s battery level as a critical resource. If the battery level is
too low, the character refuses to be picked up by the PDA or
escapes to the nearest available display.

To support the aforementioned scenario, character animation
software packages need to be extended with UbiAgent
components without modifying often proprietary internal software
structure. Although our test scenario currently relies on our
custom AR application framework, popular commercial animation
packages can also be enhanced by special plug-ins. Firstly, each
character animation application instance is encapsulated by a
UbiAgent application instance object. This object runs
independently from the application but continuously monitors its
internal state and maps the observed state information to external
parameters such as the character’s rendering mode, pose, scale,
current animation sequence and level-of-detail.

The external parameters are defined by a character animation
attribute schema understood by a dedicated application control
logic generating commands for UbiAgent-enabled animation
tools. All tools using this schema (even if they internally rely on
previously unknown, exotic software packages) can dynamically
join the virtual UbiAgent workspace without revealing their low-
level details to the character control, and thus serve as shared
rendering and manipulation resources animators can exploit.

Besides the addition of the application control and instance
objects, the characters themselves are represented by UbiAgent
bodies controlled by the agent brain component. The agent bodies
are rendered by the animation tools using the distributed character
and rendering parameters retrieved from the shared database by
the UbiAgent animation control. At the same time the brain
component monitors the PDA’s pose, and activates or deactivates
agent bodies if a user penetrates a display’s hotspot area and the
“hospitability” parameter of the corresponding habitat is above a
predefined threshold.

The modeler and animator PC, the PDA, and the presentation
machine are all habitats expecting UbiAgents by running a
applications to render and tweak 3D animated characters. The
agent brain, the XML database, and the habitat manager run on a
dedicated control PC. All components communicate via WLAN
using TCP/IP and UDP messages. The handheld agent platform is
installed on a Dell Axim X51 PDA with hardware accelerated
graphics, which runs Daniel Wagner’s Klimt and FPK libraries
[36] to render an animated 3D character. The PC-based characters
rely on the Cal3D character animation library [38].

5.2. Ubiquitous Technician
Technicians are a scarce resource in every research lab and
company. Their never-ending to-do list is constantly extended
with requests to fix malfunctioning computers, calibrate tracking
systems, and maintain copy machines, all located in different

offices. The Ubiquitous Technician application provides
assistance for our research lab’s technician to complete various
maintenance tasks on his to-do list. In this scenario we
intentionally reuse elements from previous research
demonstrations to test the encapsulation and communication of
complex external AR applications, and to create richer content for
our demo application.

The technician agent’s brain creates a control loop to
systematically go through the technician’s to-do items (see Figure
1). As each task is located at a different place in our building, the
loop first activates a modified version of the Signpost AR indoor
navigation system [39] to guide the technician to the next task’s
location. The navigation application runs on a Sony VAIO U70
portable computer equipped with a webcam tracking fiducial
markers on office walls and corridors, a UbiSense ultra-wideband
(UWB) position tracker, and an inertial sensor to calculate the
technician’s current pose inside the building. The application
displays a virtual compass suggesting the direction the technician
should follow to reach the target.

This complex AR navigation system is encapsulated by a
UbiAgent application controller object exposing only three
attributes: current destination, current location, and a flag
indicating whether the current destination has been reached.
UbiAgent bodies serve as visualization tools for meaningful
software components in the technician support applications.
Agent bodies are activated and deactivated by a central agent
brain control based on the technician’s current location and the
status and order of his to-do list.

After the technician arrives at the target location, the agent
migrates to the AR application associated with the current
maintenance task. The first job is to calibrate a cell of a UWB
tracking system. An AR application [40] visualizes angle-of-
arrival sensor measurements by virtual rays emanating from the
physical sensors, and helps overcome problematic situations such
as multipath signals caused by reflections from metal ceilings and
doors. When the technician has finished the calibration procedure,
he returns to the indoor navigation guide, which has already
received a message with the next destination from the UbiAgent
brain. Again, the technician is guided to the next task, which is the
aforementioned LEGO maintenance scenario described in our
previous work [1]. In this application an animated repairman
assists the technician to assemble and maintain a real LEGO®
Mindstorms robot.

In the Ubiquitous Technician scenario three previously
independent AR applications communicate with one another using
the XML database as a shared agent and application memory.
New applications can be dynamically added to the to-do list by
encapsulating them with an appropriate application control. The
schema of the application control must contain a Signpost-
compatible description of the application’s location in the
building, a trigger to activate the application when the technician
is nearby, and a flag indicating that the application task has been
completed, which instructs the agent brain to proceed to the next
to-do item.

6 DISCUSSION
Weiser [41] questions the usefulness of embodied interface

agents by juxtaposing them with Ubicomp systems. He argues
that assistant-like interfaces increase the seam between humans
and computers, which conflicts with the fundamental goals of
Ubicomp. We believe that empowering our interface agents with
proactive behavior minimizes the required explicit user input to
ensure correct agent operation, which makes agent presence less

apparent in the interface. We also agree with Weiser’s argument
that some users do want personal assistants acting at their
command, therefore the potential use of embodied animated
agents in Ubicomp environments is justified.

User preference for agent representations spans a wide
spectrum between lifelike and non-anthropomorphic
embodiments. The robot maintenance application used a human-
like animated character, while the calibration aid employed simple
geometrical shapes to visualize application state. While non-
verbal communication may increase the information bandwidth of
agents, in some AR systems a simple arrow may prove more
useful than a full-body animated character. A possible solution to
match preferences and purposes of a wide range of users and
applications may be the employment of multiple agent bodies
with varying level of realism and detail. The appropriate agent
body would either be explicitly selected by the user, or
automatically chosen by the application matching the amount of
information currently shown on the display to avoid clutters.

Another important variable in agent systems is the amount of
proactivity ranging between submission and aggression. Humans
are normally suspicious about systems that exclude users from the
decision making loop. On the other hand, the complexity of
computing systems including AR systems will soon reach a level
where direct manipulation interfaces become so saturated with
controllable parameters that users will have no other choice than
delegating interface manipulation tasks. We also share
Lieberman’s point [25] that agents are rather suited for making
uncritical decisions, therefore we should let agents make a
suggestion instead of immediate actions. A typical UbiAgent
example for this approach is the grace period allowing appropriate
user response before agent migration.

7 CONCLUSION AND FUTURE WORK
In this paper we proposed a framework for adaptive AR

systems and discussed techniques hitherto unexplored in AR such
as multi-user interface adaptation, proactive interface migration
and opportunistic exploitation of dynamic resources. We argue
that animated interface agents equipped with typical
characteristics of Ubicomp systems enrich interaction in AR.

We created our own ontology for adaptive AR systems without
the intention of completeness. However, an exhaustive ontology
would be highly desirable, in particular if based on standards such
as WSDL [42]. This would allow information sharing between
UbiAgents and other AR and agent systems, supporting resource
sharing between diverse computing systems. Another important
issue for future work is to eliminate vulnerability caused by the
current framework implementation based on a single central
database, which makes our system prone to network and computer
failures.

ACKNOWLEDGEMENTS
This project has been sponsored by the Austrian Science Fund
FWF (contract No. Y193). The authors wish to thank Joseph
Newman for valuable discussions on UbiAgent concepts, Daniel
Wagner for his Muddleware and FPK software packages, and
Gerhard Schall for his help with the Signpost system.

REFERENCES
[1] István Barakonyi, Thomas Psik, and Dieter Schmalstieg. Agents That Talk and

Hit Back: Animated Agents in Augmented Reality. In Proc. of International
Symposium on Mixed and Augmented Reality (ISMAR'04), Arlington, VA,
USA, pp. 141-150, 2004.

[2] Anton Nijholt, Thomas Rist, and Kees Tuijnenbreijer. Lost in Ambient
Intelligence? Extended abstract in Proc. of Conf. on Human Factors in Comp.
Systems (CHI'04) Workshop, Vienna, Austria, pp. 1725-1726, 2004.

[3] Tomas Akenine-Möller and Eric Haines. Real-time Rendering, A K Peters ltd.,
2nd edition, 2002.

[4] Ryan Bane and Tobias Höllerer. Interactive Tools for Virtual X-Ray Vision in
Mobile Augmented Reality, In Proc. of International Symposium on Mixed
and Augmented Reality (ISMAR'04), Arlington, VA, USA, pp. 231-239, 2004.

[5] Steven Feiner, Blair MacIntyre, and Doree Seligmann. Knowledge-based
Augmented Reality. In Communication of the ACM, 36 (7), pp. 52-62, 1993.

[6] Simon Julier, Marco Lanzagorta, Yohan Baillot, and Dennis Brown.
Information Filtering for Mobile Augmented Reality. In Computer Graphics
and Applications, 22 (5), pp. 12-15, 2002.

[7] Joseph Newman, Martin Wagner, Martin Bauer, Asa MacWilliams, Thomas
Pintaric, Dagmar Beyer, Daniel Pustka, Franz Strasser, Dieter Schmalstieg,
and Gudrun Klinker. Ubiquitous Tracking for Augmented Reality. In Proc. of
International Symposium on Mixed and Augmented Reality (ISMAR'04),
Arlington VA, USA, pp. 192-201, 2004.

[8] Ed Kaiser, Alex Olwal, David McGee, Hrvoje Benko, Andrea Corradini,
Xiaoguang Li, Phil Cohen, and Steven Feiner. Mutual Disambiguation of 3D
Multimodal Interaction in Augmented and Virtual Reality. In Proc. of
International Conference on Multimodal Interfaces (ICMI’03), Vancouver,
Canada, pp. 12-19, 2003.

[9] Hrvoje Benko, Edward W. Ishak, and Steven Feiner. Cross-Dimensional
Gestural Interaction Techniques for Hybrid Imrnersive Environments. In Proc.
of Virtual Reality Conference (VR'05), Bonn, Germany, pp. 209-216, 2005.

[10] José Pascual Molina Massó, Jean Vanderdonckt, and Pascual González López.
Direct Manipulation of User Interfaces for Migration. In Proc. of
International Conference on Intelligent User Interfaces (IUI’06), Sydney,
Australia, pp. 140-147, 2006.

[11] Asa MacWilliams, Christian Sandor, Martin Wagner, Martin Bauer, Gudrun
Klinker, and Bernd Brügge. Herding Sheep: Live System Development for
Distributed Augmented Reality. In Proc. of International Symposium on Mixed
and Augmented Reality (ISMAR'03), Tokyo, Japan, pp. 123-132, 2003.

[12] Dieter Schmalstieg, Gerhard Reitmayr, and Gerd Hesina. Distributed
Applications for Collaborative Three-Dimensional Workspaces. In Presence:
Teleoperators and Virtual Environments, 12 (1), pp. 52-67, 2003.

[13] Jun Rekimoto and Masanori Saitoh. Augmented Surfaces: A Spatially
Continuous Work Space for Hybrid Computing Environments. In Proc. of
Conference on Human Factors in Computing Systems (CHI'99), Pittsburgh,
PA, USA, pp. 378-385, 1999.

[14] Andreas Butz, Tobias Höllerer, Steven Feiner, Blair MacIntyre, and Clifford
Beshers. Enveloping Users and Computers in a Collaborative 3D Augmented
Reality. In Proc. of International Workshop on Augmented Reality (IWAR'99),
San Francisco, CA, USA, pp. 35-44, 1999.

[15] Ben Shneiderman and Pattie Maes. Direct Manipulation vs. Interface Agents.
Excerpts from Debates at IUI 97 and CHI 97. In ACM Interactions, 4 (6), pp.
42-61, 1997.

[16] Pattie Maes, Trevor Darrell, Bruce Blumberg and Alex Pentland. The ALIVE
System: Wireless, Full-body Interaction with Autonomous Agents. In ACM
Multimedia Systems, 5 (2), pp.105-112, 1997.

[17] Mahoro Anabuki, Hiroyuki Kakuta, Hiroyuki Yamamoto, and Hideyuki
Tamura. Welbo: An Embodied Conversational Agent Living in Mixed Reality
Space, In Proc. of Conference on Human Factors in Computing Systems
(CHI'00), Extended Abstracts, The Hague, The Netherlands, pp. 10-11, 2000.

[18] Blair MacIntyre, Jay D. Bolter, Jeannie Vaughan, Brendan Hannigan,
Emmanuel Moreno, Markus Haas, and Maribeth Gandy. Three Angry Men:
Dramatizing Point-of-View using Augmented Reality. In Proc. of SIGGRAPH
2002 Technical Sketches, San Antonio, TX, 2002.

[19] Adrian Cheok, Wang Weihua, Xubo Yang, Simon Prince, Fong S. Wan, Mark
Billinghurst, and Hirokazu Kato. Interactive Theatre Experience in Embodied
and Wearable Mixed Reality Space. In Proc. of International Symposium on
Mixed and Augmented Reality (ISMAR'02), Darmstadt, Germany, 2002.

[20] Marc Cavazza, Olivier Martin, Fred Charles, Steven J. Mead, and Xavier
Marichal. Interacting with Virtual Agents in Mixed Reality Interactive

Storytelling. In Proc. of Intelligent Virtual Agents, Kloster Irsee, Germany,
2003.

[21] Selim Balcisoy, Marcelo Kallmann, Rémy Torre, Pascal Fua, and Daniel
Thalmann. Interaction Techniques with Virtual Humans in Mixed
Environments. In Proc. of International Symposium on Mixed and Augmented
Reality (ISMAR'01), Tokyo, Japan, 2001.

[22] Luca Vacchetti, Vincent Lepetit, George Papagiannakis, Michal Ponder, and
Pascal Fua. Stable Real-time Interaction between Virtual Humans and Real
Scenes. In Proc. of International Conference on 3D Digital Imaging and
Modeling (3DIM'03), Banff, AL, Canada, pp. 449-457, 2003.

[23] Brenda Laurel. Interface Agents: Metaphors with Character. In The Art of
Human-Computer Interface Design, edited by B. Laurel, Reading, MA, USA,
Addison-Wesley, 1990.

[24] Stan Franklin and Art Graesser. Is it an Agent or just a Program? A Taxonomy
for Autonomous Agents. In Agent Theories, Architectures and Languages,
Springer Verlag, Berlin, Germany, pp. 21-95, 1996.

[25] Henry Lieberman. Autonomous Interface Agents. In Proc. of Conf. on Comp.
and Human Interface (CHI'97), Atlanta, GA, USA, pp. 67-74, 1997.

[26] David Kotz and Robert S. Gray. Mobile Agents and the Future of the Internet,
In SIGOPS Operating Systems Review, 33 (3), pp. 7-13, 1999.

[27] Kenji Mase, Yasuyuki Sumi, and Rieko Kadobayashi. The Weaved Reality:
What Context-aware Interface Agents Bring About. In Proc. of Asian
Conference on Computer Vision (ACCV'00), Taipei, 2000.

[28] Daniel Wagner, Mark Billinghurst, and Dieter Schmalstieg. How Real Should
Virtual Characters Be? To appear in Proc. of Conference on Advances in
Computer Entertainment Technology (ACE'06), Los Angeles, CA, USA, 2006.

[29] Michael Kruppa and Antonio Krueger. Concepts for a Combined Use of
Personal Digital Assistants and Large Remote Displays. In Proc. of Simulation
and Visualization (SIMVIS'03), Magdeburg, Germany, pp. 349-361, 2003.

[30] Bill Tomlinson, Man Lok Yau, and Eric Baumer. Embodied Mobile Agents.
To appear in Proc. of International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS'06), Hakodate, Japan, 2006.

[31] Brian R. Duffy, Gregory M.P. O’Hare, Alan N. Martin, John F. Bradley, and
Bianca Schön. Agent Chameleons: Agent Minds and Bodies. In Proc. of
International Conf. on Computer Animation and Social Agents (CASA'03),
New Brunswick, NJ, USA, 2003.

[32] Michael E. Bratman. Intentions, Plans, and Practical Reason. Harvard
University Press, Cambridge, MA, USA, 1987.

[33] Michael Georgeff, Barney Pell, Martha Pollack, Milind Tambe, and Michael
Wooldridge. The Belief-Desire-Intention Model of Agency. In Proc. Of Intern.
Workshop on Intelligent Agents, Heidelberg, Germany, pp. 1-10, 1999.

[34] Dieter Schmalstieg, Anton Fuhrmann, Gerd Hesina, Zsolt Szalavári, Miguel
Encarnação, Michael Gervautz, and Werner Purgathofer. The Studierstube
Augmented Reality Project. In PRESENCE - Teleoperators and Virtual
Environments, MIT Press, 2002.

[35] Pivy website: http://pivy.tammura.at/
[36] Handheld AR libraries website (Muddleware, Klimt, FPK):

http://studierstube.icg.tu-graz.ac.at/handheld_ar/
[37] ARToolKitPlus website:

http://studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php
[38] Cal3D website: http://cal3d.sourceforge.net/
[39] Michael Kalkusch, Thomas Lidy, Michael Knapp, Gerhard Reitmayr, Hannes

Kaufmann, and Dieter Schmalstieg. Structured Visual Markers for Indoor
Pathfinding, In Proc. of the First International Workshop on ARToolKit, 2002.

[40] Joseph Newman, Gerhard Schall, István Barakonyi, Andreas Schürzinger, and
Dieter Schmalstieg. Wide Area Tracking Tools for Augmented Reality. In
Advances in Pervasive Computing 2006, Vol. 207, Austrian Computer Society,
Vienna, 2006.

[41] Mark Weiser. Does Ubiquitous Computing Need Interface Agents? MIT
Media Lab Symposium on Interface Agents, Cambridge, MA, USA, 1992.

[42] WSDL website: http://www.w3.org/TR/wsdl

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

